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INTRODUCTION
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KNOWLEDGE GRAPHS

A knowledge graph (KG) is a data repository that stores real-world
knowledge under some schema, e.g., an ontology.

m Directed multi-graphs
m Nodes: entities
m Edges: relationships between
entities with relation types as
labels
m Statements:
(subject—> predicate—>object)
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Ficure 1: An Example of a KG
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KNowLEDGE GRAPHS

OpenlE
® Freebase Cye GeoNames
ConceptNet . .
GDelt
. KNOWLEDGE
Deoedia SRAPH
edia
P PROSPERA
YAGO .
‘ WordNet Metaweb
. . Knowledge Vault

FIGURE 2: Figure From https://medium.com/@sderymail/challenges- of - knowledge- graph- part-1-d9ffe9e35214

m Knowledge graphs can be linked based on alignment techniques.
m (dbr:Place, owl:equivalentClass, schma-org:Place)
m (dbr:Santa_Barbara,_California, owl:sameAs,
freebase:Santa_Barbara,_California)
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AprprLicATIONS OF KNOWLEDGE GRAPHS
m Cross-domain Research

Ficure 3: Linked Open Cloud
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AprprLicATIONS OF KNOWLEDGE GRAPHS

m Question Answering Systems, e.g., Apple Siri, Bing Search.
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AvrprLiCcATIONS OF KNOWLEDGE GRAPHS
m Information Retrieval, e.g. Google Knowledge Graph
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SPATIOTEMPORAL DATA IN KNOWLEDGE GRAPHS

Geographic Information

m Geographic Information of Entities
m Coordinate information
m (Santa Barbara -> coordinateLocation -> (34°25’33"N, 119°42’51"W));
m Topological relations
m (Santa Barbara -> partOf -> California) ;
m Other Geospatial-Related Statements
m (France -> memberOf -> European Union);
m (Washington, D.C. -> hasPopulation -> 672,228);
m (Los Angeles -> twinnedAdministrativeBody -> Berlin);
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SPATIOTEMPORAL DATA IN KNOWLEDGE GRAPHS

Temporal Information

m Temporal Scope of a Statement

m (Poland —> memberOf —> Warsaw Pact, [1955, 1991]);
m (Washington, D.C. -> hasPopulation -> 672,228, 2015); ...

m Time as Literals

m (Barack Obama —> dateOfBirth —> 4 August 1961);
m (Santa Barbara —> inception —> 1847); ...

m Transaction Time
m (Fernando Torres—> playFor—>Chelsea, [2011,2015), [09/02/2017])
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WHY DO SPATIOTEMPORAL DATA MATTER?

m Examples:
m Geographic question: Find the cities in California which the longest
river in California flowed through?
m Find the longest river in California.
m Spatial operations are imposed over the river and all the cities in California.
m Temporal query: (?Person) (?Person —> workLocation —> New York
City) A (?Person —> positionHeld —> President of the United States)
m Find candidates that satisfy both statements.
m Check the temporal scoping of the two statements.
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RESENTATION LEARNING

KnowLEDGE GrAPH EMBEDDINGS

m Basic idea: encode entities and relations as latent low-dimensional
vectors, where each dimension represents one latent feature.
m Take TranskE as an example:

m Given a statement (Santa Barbara—>partOf—>California), |Santa
Barbara+partOf-California|=0

A
h

o
o

Entity and Relation Space

Ficure 7: Knowledge Graph Embedding- TransE
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KnowLEDGE GrAPH EMBEDDINGS

m Translation-based models (e.g. TransE, TransH, and TransR)

h
r
re )/
h:\’f
T
Entity and Relation Space Entity and Relation Space Entity Space Relation Space of r
(a) TransE. (b) TransH (©) TransR

m Semantic matching models (e.g. RESCAL, DisMult, and HolE)

fr(ht)

(a) RESCAL. (b) DistMult. () HolE.
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SpaTiALLY ExpLicit MODEL

m Spatially Explicit Model (Goodchild et al., 2004): A model is said to
be spatially explicit when it differentiates behaviors and predictions
according to spatial location

m What makes a model spatially explicit? (Goodchild et al., 2001)

m The invariance test: the results are not invariant under relocation of
the studied phenomena

m The representation test: contain spatial representations of the
studied phenomena in their implementations (e.g., coordinates, spatial
relations, place names, and so on)

m The formulation test: use spatial concepts in their formulations, e.g.
the notion of a neighborhood

m The outcome test: the spatial structures/forms of inputs and outcomes
of the model differ
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SpaTiALLY ExprLiciTt MACHINE LEARNING MODEL

m Spatially Explicit Machine Learning Model: Improve the
performance of current state-of-the-art machine learning models by
using spatial thinking and principles such as:

m spatial variability
m distance decay effect
= map projection

m Examples:

m Geographic Question Answering
m Geographic Knowledge Graph Summarization
m Location Encoding
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GEOGRAPHIC QUESTION ANSWERING

m Due to missing information and logical inconsistency, it is likely
to receive no answer for questions given a knowledge graph.

m This challenge is commonly handled by query relaxation/rewriting
based on knowledge graph embedding.
m Examples:
m What is the weather like in Montecito? (missing information)
m After rewriting: What is the weather like in Santa Barbara?
m Which city spans Texas and Colorado? (logical inconsistency)
m After relaxation: Which city locates in Texas?
m The relaxation of geo-queries should consider spatial proximity and
place hierachy.
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QuEerY RELaxaTION BAasED oN KNOWLEDGE GRAPH EMBEDDINGS

m What is the American drama films directed by Tim Burton, one of
whose star actors was born in New York?
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Ficure 8: M. Wang et al., 2018
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WORKFLOW

Q: In which computer hardware
company located in Cupertino isiwas

Question
Steve Jobs a board member?
SELECT ?v
l WHERE {
?v dba:locationCity dbr:Cupertino, _California
?v dbazindustry dbr-Computer_hardware
dor:Steve_Jobs dbo:board 7v
Query }

Query relaxation / rewriting

SELECT %
WHERE {
?v dbo:locationCity dbr:California

Relaxed query v dboiindustry dbr.Computer_hardware
dbr:Steve_Jobs dbo:board ?v
b

1 : .
Q: In which computer hardware
company located in California is/lwas
Steve Jobs a board member?

A: Apple Inc.

Relaxed Question + Answer
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SpatiAaLLy Expricit KNOWLEDGE GrRAPH EMBEDDING

m TransGeo: to assign larger weights to geographical triples in an
entity context, and these weights are modeled using a distance
decay function

Robert Lansing (actor)
Sacramento (City) dbo:birthPlace Air Buddy (dog)

‘dbo:capital dbo:deathPlace

dbo:isPartOf

Humboldt County

dbo:isPartOf

Santa Barbara County

dbo:isPartOf

Los Angeles County
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EvAaLuATION

m Link prediction: Given h, r, to predict the correct ¢

m Answer prediction by relaxation/rewriting: The rank of the correct
answer in the queried answer ranking list

TaBLE 1: Two evaluation tasks for different KG embedding models

Link Prediction Query Relaxation
MRR HIT@10 MRR HIT@10
Raw Filter Raw Filter

TransE Model 0.122 0.149 30.00% 34.00% 0.008 5% (1 out of 20)

Wang et al. (2018) 0.113 0.154 27.20% 30.50% 0.000 0% (0 out of 20)
TransGeoreqular 0.094 | 0129 | 2850% | 33.40% | 0.098 | 25% (5outof 20)
TransGeoynyeighted | 0108 | 0.152 | 3080% | 87.80% | 0.043 15% (3 out of 20)
TransGeo 0.104 0.159 32.40% 42.10% 0.109 30% (6 out of 20)
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GEOKG SUMMARIZATION
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Geo KNOWLEDGE GRAPH SUMMARIZATION

m Summarization
m |dentify the underlying structure and meaning of the original Geographic
KG using a digest graph
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m Question: How can we leverage both top-down knowledge (e.g.,
considering spatial component explicitly) and bottom-up
approaches (e.g., machine learning) to help summarize geo KGs by
taking into account the balance between commonality and
variability ?
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GEOKG SUMMARIZATION
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SUMMARIZATION EXAMPLE

dbr:Los_Angeles

dbo:isPartOf dbo:isPartO dboisPartOf

dbo:isPartOf

dbr:California

dbr:Hollywood

economy in "a broad range of professional and cultural dbo:birthPlace
dbr:United_States fields. Los Angeles is also famous as the home

of [Hollywood, a major center of the world entertainment .-~
industry. -

.- "dbr:Leonardo_DiCaprio

dbo:residence. dbo:starring

dbr:Malibu,_California

dbo:director:

dbr:Titanic_(1997_fil
dbr:James_Cameron rTitanic._( —film)
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The Geographic Knowledge Graph Environment Policy-Based Agent

: Ta Target - Cunent

i : ity Embeds

i dbr:United_States dbr:Bureau_of_Land_Management : S — "
H ] tate |
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dbr _University D.
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dbosbi hP\VaVc;

JRELU
‘.um George_W._Getty )
-deathPlace ( N
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dborcity p
/

spatial

dbr:Institute_of_Medicine
dbo:headquarter spatial

dbr:United_States_Department_of_State
i dbr:United_Negro_College_Fun :
: . i Adtion
i Place Entity to Summarize: dbr:Washington, D.C. ‘\OOOOOOO

m The process starts with only one node

m The agent analyzes the original graph structure and the Wikipedia
summary

m The agent iteratively adds new relations and nodes to the graph
until the graph conveys information comparable to the Wikipedia
summary

dbo:deathPlace

Softmax

Ibo:birthPlace
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GEOKG SUMMARIZATION
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Markov DEecisioN ProcEss

m Actions
m 534 relations + 1 special spatial relation

dboslocation
. spatial

““dbocity.. - 7
dbr:Washington_D\.(g(' ---
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_—
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m RL-based models improve the cosine similarity (the summary graph
is comparable to the Wikipedia abstract)

RL (nonspatial-normal)

RL (spatial-normal)

RL (nonspatial-maxmin)

RL (spatial-maxmin)|RL (spatial-maxmin-pr)|

Entity Embedding 0.0307

0.0496|

0.0523

0.0732

0.0760

Word Embdding 0.1659

0.2527|

0.2444

0.3025

0.3159

m The spatially explicit model can perform twice as good as

non-spatial models
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®00000

LocatioNn ENcoODING

m More direct approach?
m A general-purpose representation model for space is particular
useful to design spatially explicit models for multiple tasks
m Advantage:
m Preserve spatial proximity and directions
m Easy to generalize to unseen locations
m Avoid explicit pairwise distance computation which is unnecessarily
expensive

(longitude, latitude) > -
or (x, )

Location x Location Encoder f()  Location Embedding p

COOOOJ
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LocaTtion Encobing
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GriDp CELL

m Nobel winning Neuroscience research shows that grid cells in
mammals provide a multi-scale periodic representation that
functions as a metric for coding space.

m Grid cells are critical for integrating self-motion (path integration, or
so-called dead-reckoning).

J ZE |
/P ﬁ*i”"

Ficure 10: Figure from R. Gao et al., (2019)
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LocaTtion Encobing
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GriDp CELL

m Blair et al. (2007) show that the multi-scale periodic
representation of grid cells can be simulated by summing three
cosine grating functions oriented 60° apart.

~ ~7 MAX

X (x()syo)

Ficure 11: Figure from Blair et al. (2007)

m Encode locations with multi-scale periodic representations by
using 3 sinusoidal functions.
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LocaTtion Encobing
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APPLICATIONS

m KG related tasks:

m Geographic Question Answering

m Geographic Knowledge Graph Summarization
m Other tasks:

m Air Pollution Forecasting

m Location-Aware Image Classification

European Toad Spiny Toad

Ficure 12: Figure from Mac Aodha et al. (2019)
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LocatioN-AwARE IMAGE CLASSIFICATION

" European Toad

Image | Image Classifier g() P(ylx) P(yl) ——>
Spiny Toad
Prediction
(longitude, latitude) >
or (x,y)
Location x Location Encoder f()  Location Embedding p

Ficure 13: Location-Aware Image Classification
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LocaTtion Encobing
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EvaLuaTiON
BirdSnap{ | NABirdsf
No Prior (i.e. uniform) 70.07 76.08
Nearest Neighbor (num) 77.76 79.99
Nearest Neighbor (spatial) 77.98 80.79
Adaptive Kernel (Berg et al., 2014) 78.65 81.11
tile (Tang et al., 2015) (location only) 77.19 79.58
wrap (Mac Aodha et al., 2019) (location only) | 78.65 81.15
grid (Amin=0.0001, \ez=360, S = 64) 79.44 81.28
theory (Amin=0.0001, \,,,-=360, S = 64) 79.35 81.59

Ficure 14: Evaluation Result for Location Aware Image Classification
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SUMMARY

m Knowledge graphs play important roles in data storage, data
sharing, data synthesis, semantic search, cross-domain
studies, etc.

m Spatiotemporal data are abundant within and beyond knowledge
graphs.

m Spatially explicit models are needed for the advancement of spatial
data science.
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