Introduction 00000000	Метнор 00000	Experiment 000	

Contextual Graph Attention for Answering Logical Queries over Incomplete Knowledge Graphs

K-CAP 2019, Nov. 2019

Gengchen Mai¹ Krzysztof Janowicz¹ Bo Yan¹ Rui Zhu¹ Ling Cai¹ Ni Lao²

¹ STKO Lab, University of California Santa Barbara ²SayMosaic Inc., Palo Alto, CA, USA

Introduction •0000000	Метнод 00000	Experiment 000	

INTRODUCTION

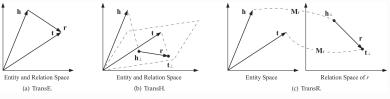
- Knowledge Graph (KG): a data repository that describes entities and their relationships across domains according to some schema
- Problem: Incompleteness, Sparsity, and Noise

Figure From https://medium.com/@sderymail/challenges-of-knowledge-graph-part-1-d9ffe9e35214

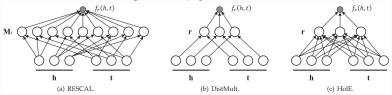
Introduction 00000000	Метноd 00000	Experiment 000	

INTRODUCTION

- Knowledge Graph Embedding for Knowledge Graph Completion
- The major KG Embedding models can be classified as two categories (Wang et al. 2017):
 - Translation-based models (e.g. TransE, TransH, and TransR)



Semantic matching models (e.g. RESCAL, DisMult, and HolE)



Introduction 0000000	Метнор 00000	Experiment 000	

INTRODUCTION

Training a KG embedding model over a knowledge graph (KG) $\mathcal{G} = (\mathcal{V}, \mathcal{R})$

- Task: link prediction and entity classification
- The model complexity is linear with respect to $|\mathcal{V}|$
- Dealing with more complex tasks?

CONJUNCTIVE GRAPH QUERY (CGQ)

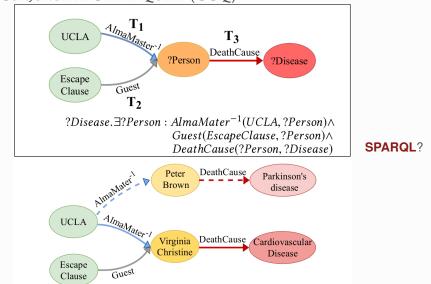
Using KG Embeddings for **Conjunctive Graph Query (CGQ)** A query $q \in Q(G)$ that can be written as follows:

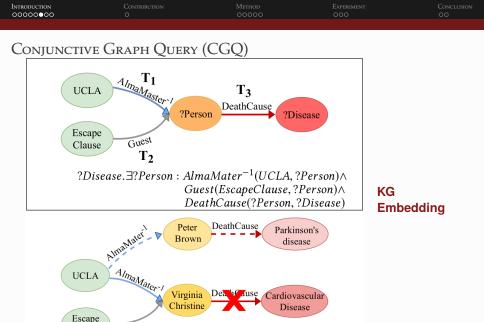
$$q = V_{?} \exists V_{1}, V_{2}, ..., V_{m} : b_{1} \land b_{2} \land ... \land b_{n}$$
where $b_{i} = r(e_{k}, V_{l}), V_{l} \in \{V_{?}, V_{1}, V_{2}, ..., V_{m}\}, e_{k} \in \mathcal{V}, r \in \mathcal{R}$
or $b_{i} = r(V_{k}, V_{l}), V_{k}, V_{l} \in \{V_{?}, V_{1}, V_{2}, ..., V_{m}\}, k \neq l, r \in \mathcal{R}$

Requirements:

- Require one variable as the answer denotation: Target Node
- No variable in the predicate position
- Only consider the **conjunction** of graph patterns
- The dependence graph of q must be a directed acyclic graph (DAG)

Conjunctive Graph Query (CGQ)





SUPPORT AND CENTRALITY

Clause

Guest

GENGCHEN MAI¹, KRZYSZTOF JANOWICZ¹, BO YAN¹, RUI ZHU¹, LING CAI¹, NI LAO²

Introduction		
00000000		

Conjunctive Graph Query (CGQ)

Using KG Embedding to predict the answer to a CGQ:

- **Projection Operation**: **Translate** from the corresponding entity nodes via different relation embeddings through different paths (triple T_1 and T_2).
- Intersection Operation: Integrate predicted embeddings for the same variable (?Person) from different paths (triple T₁ and T₂).
- Recursively use these two operators until we get the embedding for the target variable q.
- Nearest neighbor search for answer entities with q by cosine similarity.



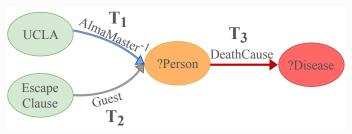
Introduction		
0000000		

Related Work

• Wang et al. (2018): Pretrain KG embeddings and use it for CGQ

- lacks flexibility: deterministic weighting approach for path embedding integration
- No end-to-end: does not directly optimized on the QA objective
- Hamilton et al. (2018): An end-to-end model for logic query answering with an elementwise-mean intersection operator which treats query path equally
 - Fail to consider unequal contribution from different paths
 - Do not consider the original KG structure

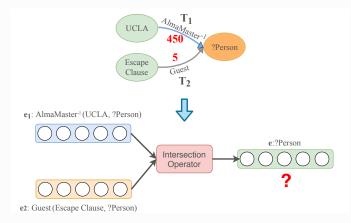
Attention?



Attention Mechanism

Consider unequal contribution from different triple paths:

Problem for Attention mechanism: The center node embedding/query embedding is a prerequisite for attention score computing which is unknown in this case



	Method	
	•0000	

Entity Embedding

Entity embedding lookup:

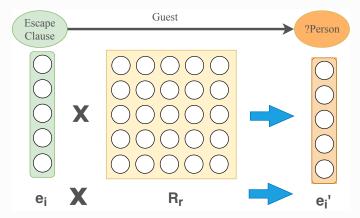
$$\mathbf{e}_{i} = \frac{\mathbf{Z}_{\gamma} \mathbf{x}_{i}}{\| \mathbf{Z}_{\gamma} \mathbf{x}_{i} \|_{L2}} \tag{1}$$

■ $Z_{\gamma} \in \mathbb{R}^{d \times m_{\gamma}}$ is the type-specific embedding matrices for all entities with type $\gamma = \Gamma(e_i)$.

PROJECTION OPERATION

$$\mathbf{e}'_i = \mathcal{P}(\mathbf{e}_i, \mathbf{r}) = \mathbf{R}_r \mathbf{e}_i \tag{2}$$

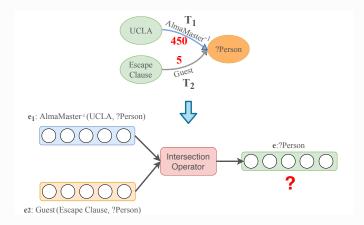
■ $\mathbf{R}_r \in \mathbb{R}^{d \times d}$ is a trainable and relation-specific matrix for relation type *r*.



Introduction 00000000	Метнор 00●00	Experiment 000	

INTERSECTION OPERATION

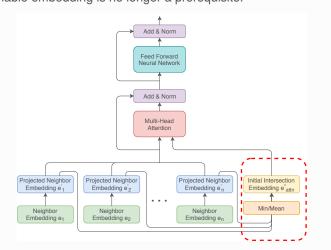
$$\mathbf{e}'' = I_{CGA}(\{\mathbf{e}'_1, \mathbf{e}'_2, ..., \mathbf{e}'_i, ..., \mathbf{e}'_n\})$$
(3)



	Метнор	
	00000	

INTERSECTION OPERATION

- Multi-head attention inspired by Transformer (Vaswani et al. 2017).
- An initial intersection embedding layer (red) is used so that center variable embedding is no longer a prerequisite.



	Method	
	00000	

Model Training

Original KG Training Phase:

$$\mathcal{L}_{KG} = \sum_{e_i \in \mathcal{V}} \sum_{e_i^- \in Neg(e_i)} max(\mathbf{0}, \Delta - \Phi(\mathbf{H}_{KG}(e_i), \mathbf{e}_i) + \Phi(\mathbf{H}_{KG}(e_i), \mathbf{e}_i^-))$$
(4)

- Φ : cosine similarity function.
- **H**_{KG}(*e_i*) indicates a new embedding **e**["]_{*i*} for entity *e_i* given its 1-degree neighborhood *N*(*e_i*).
- $e_i^- \in Neg(e_i)$ is a negative sample.

Logical Query-Answer Pair Training Phase:

$$\mathcal{L}_{QA} = \sum_{(q_i, a_i) \in S} \sum_{\mathbf{a}_i^- \in Neg(q_i, a_i)} max(\mathbf{0}, \Delta - \Phi(\mathbf{q}_i, \mathbf{a}_i) + \Phi(\mathbf{q}_i, \mathbf{a}_i^-))$$
(5)

 \blacksquare q_i : query embedding.

a_{*i*}, **a**⁻: the embedding for the correct answer entity & negative answers.

The whole loss function:

$$\mathcal{L} = \mathcal{L}_{KG} + \mathcal{L}_{QA} \tag{6}$$

SUPPORT AND CENTRALITY

Introduction 00000000	Метноd 00000	Experiment •00	

DATASETS

- The original **Bio** dataset (Hamilton et al. 2018)
- We constructed two datasets from publicly available *DBpedia* and *Wikidata*: **DB18**, **WikiGeo19**
- Two metrics: ROC AUC score and average percentile rank (APR)

	Bio			DB18			WikiGeo19		
	Training	Validation	Testing	Training	Validation	Testing	Training	Validation	Testing
# of Triples	3,258,473	20,114	181,028	122,243	1,358	12,224	170,409	1,893	17,041
# of Entities	162,622	-	-	21,953	-	-	18,782	-	-
# of Relations	46	-	-	175	-	-	192	-	-
# of Sampled 2-edge QA Pairs	1M	1k/QT	10k/QT	1M	1k/QT	10k/QT	1M	1k/QT	10k/QT
# of Sampled 3-edge QA Pairs	1M	1k/QT	10k/QT	1M	1k/QT	10k/QT	1M	1k/QT	10k/QT

	Experiment	
	000	

EVALUATION RESULTS

- Adding the original KG training phase in the model training process improves the model performance.
- Adding the attention mechanism further improves the model performance.
- CGA has less learnable parameters with better performance.
- CGA shows strong advantages over baseline models especially on query types with hard negative sampling.

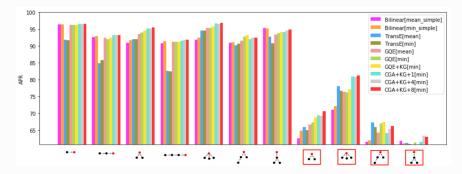
Dataset	Bio			DB18			WikiGeo19					
Metric	AUC APR		AUC APR		AUC		APR					
	All	H-Neg	All	H-Neg	All	H-Neg	All	H-Neg	All	H-Neg	All	H-Neg
Billinear[mean_simple]	81.65	67.26	82.39	70.07	82.85	64.44	85.57	71.72	81.82	60.64	82.35	64.22
Billinear[min_simple]	82.52	69.06	83.65	72.7	82.96	64.66	86.22	73.19	82.08	61.25	82.84	64.99
TransE[mean]	80.64	73.75	81.37	76.09	82.76	65.74	85.45	72.11	80.56	65.21	81.98	68.12
TransE[min]	80.26	72.71	80.97	75.03	81.77	63.95	84.42	70.06	80.22	64.57	81.51	67.14
GQE[mean]	83.4	71.76	83.82	73.41	83.38	65.82	85.63	71.77	83.1	63.51	83.81	66.98
GQE[min]	83.12	70.88	83.59	73.38	83.47	66.25	86.09	73.19	83.26	63.8	84.3	67.95
GQE+KG[min]	83.69	72.23	84.07	74.3	84.23	68.06	86.32	73.49	83.66	64.48	84.73	68.51
CGA+KG+1[min]	84.57	74.87	85.18	77.11	84.31	67.72	87.06	74.94	83.91	64.83	85.03	69
CGA+KG+4[min]	85.13	76.12	85.46	77.8	84.46	67.88	87.05	74.66	83.96	64.96	85.36	69.64
CGA+KG+8[min]	85.04	76.05	85.5	77.76	84.67	68.56	87.29	75.23	84.15	65.23	85.69	70.28
Relative Δ over GQE	2.31	7.29	2.28	5.97	1.44	3.49	1.39	2.79	1.07	2.24	1.65	3.43

Table 2: Macro-average AUC and APR over test queries with different DAG structures are used to evaluate the performance. All and H-Neg. denote macro-averaged across all query types and query types with hard negative sampling (see Section 3.2.3).

Introduction 00000000	Метноd 00000	Experiment 00•	

EVALUATION RESULTS

CGA outperforms the baseline models in almost all query types.



APR for WikiGeo19

Introduction	Метноd	Experiment	Conclusion
00000000	00000	000	• O

Conclusion

- We propose an end-to-end attention-based logical query answering model, contextual graph attention model (CGA).
- The multi-head attention mechanism is utilized in the intersection operator to automatically learn different weights for different query paths.
- Our models outperform the baseline models on three dataset (Bio, DB18, and WikiGeo19) despite using less parameters.

Introduction	Метноd	Experiment	Conclusion
00000000	00000	000	O

Future Work

- Explore ways to use our model in an inductive learning setup
- Consider disjunction, negation, and filters in query answering
- Consider variables in the predicate position