Introduction 00000	Метноd 00000000	Retrieval Systems OO	Evaluation 000000	

Combining Text Embedding and Knowledge Graph Embedding Techniques for Academic Search Engines

SemDeep-4, Ост. 2018

Gengchen Mai Krzysztof Janowicz Bo Yan

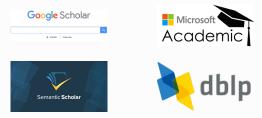
STKO Lab, University of California, Santa Barbara

Introduction ●0000	Метноd 00000000	Retrieval Systems 00	Evaluation 000000	

- The past decades have witnessed a rapid increase in the global scientific output as measured by publish papers.
- Exploring a scientific field and searching for relevant papers and authors seems like a needle-in-a-haystack problem.

Introduction 00000	Метноd 00000000	Retrieval Systems 00	Evaluation 000000	

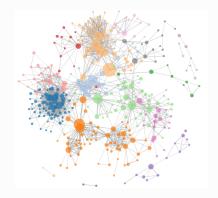
 Several academic search engines have been established to facilitate this process such as Google Scholar, Microsoft Academic Search, Semantic Scholar, DBLP, and so forth.



 They provide paper-level (and sometimes author-level) recommendations based on: textual content, authors, publication year, and citation information.

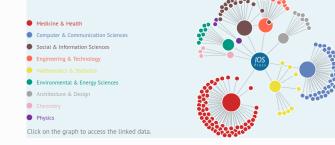
Introduction 00000	Метнор 00000000	Retrieval Systems OO	Evaluation 000000	

- Score question: how to define and measure *similarity* and *relatedness* among research papers, authors, potential funding sources, and so forth.
- Conventional way: using feature engineering which extracts features from textual content, citation networks, and co-author networks



Introduction 00000	Метнор 00000000	Retrieval Systems OO	Evaluation 000000	

- Semantic Web technologies play an increasing role in the field of academic publishing for easing publishing, retrieving, interlinking, and integrating datasets across outlets and publishers.
 - Springer Nature SciGraph
 - DBLP SPAQRL endpoint
 - IOS Press LD Connect



The availability of these bibliography knowledge graphs makes it possible to bring entity retrieval and content-based paper recommendations together.

Introduction 00000	Метноd 00000000	Retrieval Systems OO	Evaluation 000000	

Our contribution

- We present an entity retrieval prototype on top of IOS LD Connect which utilizes both textual information and structure information.
 - An entity retrieval system based on paragraph vectors and knowledge graph embeddings.
 - A paper similarity benchmark dataset from Semantic Scholar which is used to empirically evaluate the learned embedding models.
 - Another benchmark dataset from DBLP is constructed and used to evaluate the performance of the learned knowledge graph embedding model.

Introduction 00000	Dataset	Метнор 00000000	Retrieval Systems 00	Evaluation 000000	

IOS Press LD Connect

- This knowledge graph encodes the information about all the papers published by IOS Press until now.
- All metadata about papers are serialized and published as Linked Data by following the bibliographic ontology.
- a SPARQL endpoint: http://ld.iospress.nl:3030
- a dereference interface: http://ld.iospress.nl/ios/ ios-press.

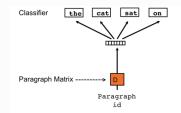
TABLE: An overview of LD Connect as of 05/2018

Class Name	# of Instances
prov:Publisher	1
bibo:Journal	125
bibo:Series	41
bibo:Periodical	2255
bibo:Issue	8891
bibo:Chapter	46915
bibo:AcademicArticle	80891
foaf:Person	385272
foaf:Organization	168360
rdf:Seq	109309

Introduction 00000	Метнор ●0000000	Retrieval Systems 00	Evaluation 000000	

Textual Embedding

- Distributed Bag of Words version of Paragraph Vector (PV-DBOW), is used to encode all textual information of each paper into low dimensional vectors.
- PV-DBOW aims to maximize the average log probability of predicting a word given the paper.
- The learned vectors preserve the semantics of the text.



Introduction 00000	Метнор О●ОООООО	Retrieval Systems 00	Evaluation 000000	

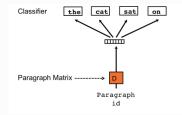
Textual Embedding

PV-DBOW calculates average log probability for a sequence of training words w₁, w₂, ..., w_T in paper pg_i.

$$\frac{1}{T} \sum_{t=1}^{T} \log p(w_t | pg_i)$$
(1)

The prediction is done by means of a softmax classifier shown in Equation 2.

$$p(w_t|pg_i) = \frac{exp(y_{w_t})}{\sum_j exp(y_j)}$$
(2)



Introduction 00000	Метнор 00●00000	Retrieval Systems OO	Evaluation 000000	

Textual Embedding

- PV-DBOW assumed that cosine similarity between two paragraph vectors represents the semantic similarity between the corresponding texts.
- all 117,835 PDF documents are parsed and mapped to entities in the knowledge graph.
- After some text preprocessing steps such as tokenization and lemmatization, the preprocessed texts of each paper are fed into PV-DBOW model.

Introduction 00000	Метноd 0000000	Retrieval Systems 00	Evaluation 000000	

Structure Embedding

- An entity retrieval system for a bibliographic dataset should go beyond simple similar paper search.
 - finding similar researchers
 - searching similar organizations
 - reviewer recommendations
- Challenge: The symbolic representations of KGs prohibit the usage of probabilistic models which are widely used in many kinds of ML applications.
- **Core problem:** how to *transform* the components of these heterogeneous networks into numerical representations such that they can be easily utilized in an entity retrieval system.

Introduction 00000	Метноd 0000●000	Retrieval Systems OO	Evaluation 000000	

Structure Embedding

- KG Embedding: learning distributional representations for components of a KG while preserving the inherent structure of the original KG.
 - Translation-based models (e.g. TransE, TransH, and TransR)
 - Semantic matching models (e.g. RESCAL, HoIE, and DisMult).

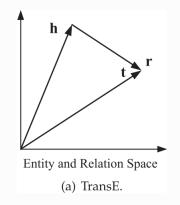
Introduction 00000	Метноd 00000●00	Retrieval Systems 00	Evaluation 000000	

(3)

Structure Embedding

- Given a knowledge graph *G* which contains a collection of triples/statements (*h_i*, *r_i*, *t_i*)
- TransE embeds the entities and relations in a KG into the same low-dimensional space
- TransE treats each relation r_i as a transformation operation from the head entity h_i to the tail entity r_i.
- A plausibility scoring function d(h_i, r_i, t_i) is defined on each triple which measures the accuracy of the translation operation:

$$d(h_i, r_i, t_i) = \parallel \mathbf{h_i} + \mathbf{r_i} - \mathbf{t_i} \parallel$$



Introduction 00000	Метноd 000000●0	Retrieval Systems 00	Evaluation 000000	

Structure Embedding

 A margin-based loss function *L* is defined to set up an optimization problem

$$\mathcal{L} = \sum_{(h_i, r_i, t_i) \in G^+} \sum_{(h'_i, r'_i, t'_i) \in G^-_{(h_i, r_i, t_i)}} [\gamma + d(h_i, r_i, t_i) - d(h'_i, r'_i, t'_i)]_+$$
(4)

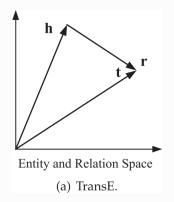
TransE has been applied to the entire LD Connect graph to learn the embeddings for all entities and relations.

Introduction 00000	Метноd 0000000●	Retrieval Systems OO	Evaluation 000000	

Structure Embedding

We choose TransE:

- Efficient to run on a large knowledge graph;
- A very intuitive geometric interpretation;
- TransE embeds all entities and relations in the same low-dimensional vector space which is important for property path reasoning.



Introduction 00000	Метнор 00000000	Retrieval Systems •O	Evaluation 000000	

PAPER SIMILARITY SEARCH INTERFACE

 A similar paper search interface¹ based on the learned PV-DBOW model.

IOS Press				-
Five stars of Linked Data vocabulary use		F	ind Similar Papers	
	Similar Entities of Five stars of Linked Data vocabulary use			
Paper			Similarity	
	Can we ever catch up with	th the Web?	62.4 ³ 6	
	The Digital Earth as knowle	odge ongine	61.6 %	
	Linked Open Vocabularies (LOV): A gateway to reusable semantic vocabularies	on the Web	61.4×	
	Considerations regarding Ontology Desi	ign Patterns	60.3 ¹⁶	
	Linked Data, Big Data, and the 4t	h Paradigm	59.5%	
	Semantic Web and Big Data meets Apple	ed Ontology	59.4%	
	Ontology Design Patterns for Data Integration: The GeoLink			
	Ontology Design Patterns for Linked Data		_	
Comb	ning Linked Data and knowledge engineering best practices to design a lightweight ro		58.6%	
	Reasoning Techniques for the V			
	Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata,		65.1%	
	Publishing and Consuming United DataOptimizing for th			
	Geospatial semantics and linked spatiotemporal data - Past, present		57.6%	
	A comprehensive quality model for L		57.3%	
	Modeling Ontology Design Patterns with Domain Experts – A View From th	e Trenches	67.0%	

FIGURE: Paper similarity search interface

http://stko-testing.geog.ucsb.edu:3000/ios/qe/paper

Introduction 00000	Метнор 00000000	Retrieval Systems O	Evaluation 000000	

ENTITY SIMILARITY SEARCH INTERFACE

 An entity similarity search interface² is developed based on the TransE model for searching different types of entities like papers, authors, journals, and organizations.

IO Pres	<u>Se</u>		~1
Person Paper Person Journal	Similar Entities of Pascal Hitzler	mind Similar Droky	
Organization		Similarity	
	Kunal Sengupta		
	Krzyszłof Jenowicz		
	Frederick Maler	94.3%	
	Reihanoh Amini		
	David Carral	85.7%	
	Nazifa Karima	82.7%	
	Adla Krisnadhi	82.5%	
	Michelle Cheatham	76.3%	
	Rozne Segers	76.3%	
	Antske Folkens	73,8%	
	Yue Ma	72.5%	
	Charles Vardeman II	72.2%	
	Markus Krötzsch	63.5%	
	Tom Nerock	66.4%	
	Holy Ferguson	63.2%	

FIGURE: Entity similarity search interface

²http://stko-testing.geog.ucsb.edu:3000/ios/qe/entity

Introduction 00000	Метнод 00000000	Retrieval Systems 00	Evaluation •00000	

PAPER SIMILARITY EVALUATION

- Similar paper binary classification task: Given a paper q_i as the query paper and K papers d_k where $k \in 1, 2, ..., K$ within the IOS Press corpus, we classify each pair (q_i, d_k) for $k \in 1, 2, ..., K$ as similar or dissimilar.
- Features: Combine textual and structure embeddings for a similar paper search task.

Introduction 00000	Метнор 00000000	Retrieval Systems OO	Evaluation 00000	

PAPER SIMILARITY EVALUATION

- Establish a paper similarity benchmark dataset:
 - Use the title of all paper (106705) in the IOS Press corpus to search for the top 500 similar papers in Semantic Scholar;
 - Co-reference papers in the search results to the papers in IOS Press document corpus by the DOIs and the titles and treat them as positive samples;
 - The same number of papers are randomly selected from the rest of the corpus and labeled as negative samples.

Introduction 00000	Метнор 0000000	Retrieval Systems 00	Evaluation 000000	

PAPER SIMILARITY EVALUATION

- 33871 paper search results left and on average 4.96 relevant papers for each search paper.
- Given a query paper q_i and a list of papers d_k ($k \in 1, 2, ..., 2K$) where $d_1, d_2, ..., d_K$ are positive samples and $d_{K+1}, d_{K+2}, ..., d_{2K}$ are negative samples:
 - Cosine similarity *PV_{ik}* between the textual embeddings of *q_i* and *d_k*
 - Cosine similarity KG_{ik} between the structure embeddings of q_i and d_k
 - Train a logistic regression model based on PV_{ik} and KG_{ik} and compare with the baseline models which use only one feature PV_{ik} or KG_{ik} in the logistic regression

 $T_{\mbox{\scriptsize ABLE}}$. The evaluation results of paper similarity binary classification task

	Precision	Recall	F1
Combined Model	0.8790	0.8372	0.8576
PV-DBOW	0.8770	0.8345	0.8552
TransE	0.6747	0.6817	0.6782

Introduction 00000	Метнор 00000000	Retrieval Systems OO	Evaluation 000000	

CO-AUTHOR INFERENCE EVALUATION

- Is TransE model seem useless?
- Node A, B, C, and D refer to four authors in LD Connect and DBLP.
- The links between nodes represent the co-author relationship.
- Hypothesis: a similarity search on the trained TransE model for author A will likely also yield author D even though their co-author relationship is missing in IOS Press LD Connect

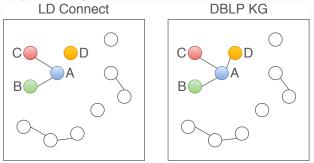


FIGURE: An illustration of co-author inference evaluation

 Introduction
 Dataset
 Method
 Retrieval Systems
 Evaluation
 Conclusion

 00000
 0
 0000000
 00
 000000
 00

Co-Author Inference Evaluation

Build a co-author dataset from DBLP:

- Randomly select 10,000 authors from LD Connect corpus;
- Based on the TransE embeddings, for each selected author p_i, obtain the top 10 similar authors p_{ik} where k ∈ 1, 2, .., 10 who have not co-authored any paper with p_i according to LD Connect;
- For each pair of authors (*p_i*, *p_{ik}*), search for # of co-authored papers they have in DBLP KG which forms author pair dataset *C*;
- For each selected author p_i , randomly select 10 authors p'_{ik} where $k \in 1, 2, ..., 10$ from the conflated LD Connect;
- For each pair of authors (p_i, p'_{ik}) , search for # of their co-authored papers in DBLP KG which forms author pair dataset C';
- Compute the ratio of co-author relationship for these person pairs in C and C' and compare them.

Introduction 00000	Метнор 00000000	Retrieval Systems OO	Evaluation 00000	

Co-Author Inference Evaluation

Result:

- 5.511 percent of author pairs in *C* which have co-author relationships in DBLP KG.
- Only 1.537 percent for the randomly selected author pair dataset C'.
- This validates our assumption that the TransE model can help predict the missing co-author relationship between authors based on the observed graph structure.

Introduction 00000	Метнор 0000000	Retrieval Systems 00	Evaluation 000000	Conclusion

Conclusion

- We presented an entity retrieval system utilizing LD Connect based on textual embedding and structure embedding techniques.
- The retrieval model is evaluated by two benchmark datasets collected from Semantic Scholar and DBLP.
- TransE does not have a huge impact on improving the performance of paper similarity classification.
- TransE is able to do co-author inference based on the observed triples in a bibliographic dataset.

		Conclusion
		00

Future Work

- More advanced sequence models like LSTM can be used instead of PV-DBOW to capture richer information from text content
- Build a joint learning model which will help both of the embedding learning processes
- Instead of using a generic knowledge graph embedding model such as TransE, explore ways to build a structure embedding model which specifically focuses on bibliographic knowledge graphs