xNet+SC: Classifying Places Based on Images by Incorporating Spatial Contexts

GIScience 2018, August 2018

Bo Yan Krzysztof Janowicz Gengchen Mai Rui Zhu

STKO Lab, University of California, Santa Barbara

Introduction •00000	Метноd 00000000	

MOTIVATION

- Recent advancements in computer vision such as deep convolutional neural networks, have quickly permeated GIScience field.
- E.g., Inferring socioeconomic attributes from cars detected in Google Street View images using deep learning (Timnit Gebru et al. 2017)

Introduction 0●0000	Метнор 00000000	

CHALLENGES

Training data can be biased, e.g., representational bias

 Google erroneously labeled photos of black people as *gorillas*, no robust solutions have been established besides simply removing such labels

Introduction 000000	Метноd 00000000	

CHALLENGES

- The visual signal alone may not be sufficient, e.g., when trying to classify place types based on facades or interiors
 - Variability of restaurant facades

Library or museum?

These cases benefit from more contextual information, e.g., by making them spatially explicit

Introduction			
000000	0000000	00	

Place Facade and Interior Image Classification Task

- Place365-CNN (Bolei Zhou et al. 2017)
 - 10 million images for scene recognition
 - 400+ unique scene categories ; many not in line with what we would call place types in GIScience, e.g., Wave
 - Different Image classification models
 - AlexNet
 - GoogLeNet
 - VGG16
 - ResNet18
 - ResNet50
 - DenseNet161

Predictions

- Type of environment: outdoor
- Scene categories: diner/outdoor (0.160), restaurant_patio (0.124)
- Scene attributes: man-made, no horizon, natural light, open area, cloth, pavement, glass, metal, driving
- Informative region for predicting the category 'diner/outdoor' is:

BO YAN, KRZYSZTOF JANOWICZ, GENGCHEN MAI, RUI ZHU

Introduction		
000000		

Adding Spatial Context

 Address the outlined challenges by adding spatial context signal, i.e., making learning spatially explicit

Here we use nearby facades classified (with potential error) before, e.g., by driving-by, making use of spatial signatures

Introduction		
00000		

Place Type Alignment

Class label alignment between Yelp and the Place365 model

Class label	Places365-CNN category
Amusement Parks	amusement_park
Bakeries	bakery
Bookstores	bookstore
Churches	church
Cinema	movie_theater
Dance Clubs	discotheque
Drugstores	drugstore, pharmacy
Hospitals	hospital, hospital_room
Hotels	hotel, hotel_room
Jewelry	jewelry_shop
Libraries	library
Museums	museum, natural_history_museum, science_museum
Restaurants	fastfood_restaurant, restaurant, restaurant_kitchen, restaurant_patio
Shoe Stores	shoe_shop
Stadiums & Arenas	stadium

■ 15 classes, 50 images/class (Yelp, Google Street View)

Introduction 000000	Метноd ●0000000	

Method

Image classification models (baseline models)

- AlexNet (8 layers)
- ResNet with 18 layers
- ResNet with 50 layers
- DenseNet with 161 layers

Spatial context models

- Spatial relatedness
- Spatial co-location
- Spatial sequence pattern

Combination approach

- Search re-ranking
- Bayesian

Method	
0000000	

Spatial Relatedness

Place2Vec: Learn POI type embeddings using spatial contexts

Method	
0000000	

Spatial Relatedness

Place2Vec (Skip-Gram) (Bo Yan et al. 2017)

Predicts context POI types given center POI types

$$\hat{y}_{context} = P(t_1, t_2, t_3, \dots, t_m | t_{center})$$
(1)

 $\hat{y}_{context}$ is the *predicted probability* of context POI types, *t* stands for POI type

Introduction 000000	Метноd 0000000	

Spatial Relatedness

- Place type embeddings (from Place2Vec)
- Search Re-ranking: re-rank CNN score of different place types by using spatial relatedness score
 - Calculate spatial context embeddings (averaged place type embeddings)
 - Obtain raw scores for each candidate image label using cosine similarity
 - Normalize raw scores to obtain spatial relatedness scores

$$s_i = \omega^V s_i^V + \omega^r s_i^r \tag{2}$$

where s_i , s_i^v , and s_i^r are the combination score, CNN score, and spatial relatedness score for label *i* respectively, ω^v and ω^r are the weights for the CNN component and spatial relatedness component, and $\omega^v + \omega^r = 1$.

Method	
0000000	

SPATIAL CO-LOCATION

Probabilistic graphical model

Use spatial co-location as Bayesian prior

$$P(t|I, C) = \frac{P(I, C|t)P(t)}{P(I, C)} = \frac{P(I|t)P(C|t)P(t)}{P(I, C)}$$

= $\frac{P(t|I)P(I)}{P(t)} \frac{P(t|C)P(C)}{P(t)} \frac{P(t)}{P(I, C)}$ (3)
 $\propto \frac{P(t|I)}{P(t)}P(t|C)$

where *I* is the image, P(t|I) can be obtained from the CNN model, P(t|C) is the spatial context prior obtained from Eq. 5, and P(t) is the label (type) prior

Метнор	
00000000	

Spatial Co-location

- Frequency of co-occurrence of different labels/POI types (restaurant, bar, hotel, school, etc) in space (similar to traditional count-based language models)
- Two assumptions
 - Bag-of-words assumption: distance doesn't matter

$$P(c_i|t) = \frac{count(c_i, t)}{count(t)}$$
(4)

where c_i is the neighbor type and t is the candidate image label (type)
Naive Bayes assumption: no spatial interaction between the context POIs

$$P(t|C) = P(t|c_1, c_2, ..., c_n) = \frac{P(t) \prod_{i=1}^{n} P(c_i|t)}{P(c_1, c_2, c_3, ..., c_n)}$$

$$\propto P(t) \prod_{i=1}^{n} P(c_i|t)$$
(5)

where $C = c_1, c_2, c_3, ..., c_n$ is the spatial context information

Method	
00000000	

Spatial Sequence Pattern

- Collapse 2D geographic space into 1D sequence
 - Distance-based
 - Morton order-based (Space-filling curve)

Method	
0000000	

Spatial Sequence Pattern

Long Short-Term Memory (LSTM)

Use LSTM to obtain spatial context prior $P(t|C) = P(t|c_1, c_2, c_3, ..., c_n)$

■ Calculate *P*(*t*|*I*, *C*) using Bayes rule

	CLASSIFICATION RESULT	
	•0	

CLASSIFICATION RESULT

■ 15 classes, 50 images/class (Yelp, Google Street View)

Mean Reciprocal Rank

MRR	AlexNet	ResNet18	ResNet50	DenseNet161
Baseline	0.27	0.28	0.31	0.31
Relatedness	0.27	0.28	0.31	0.32
Co-location	0.30	0.31	0.31	0.32
Sequence Pattern (Random)	0.38	0.40	0.42	0.42
Sequence Pattern (Distance)	0.41	0.42	0.44	0.44
Sequence Pattern (Morton order)	0.39	0.42	0.43	0.43

Accuracy@1

Accuracy@1	AlexNet	ResNet18	ResNet50	DenseNet161
Baseline	0.07	0.07	0.09	0.09
Relatedness	0.07	0.07	0.09	0.09
Co-location	0.15	0.17	0.17	0.17
Sequence Pattern (Random)	0.18	0.18	0.19	0.20
Sequence Pattern (Distance)	0.20	0.20	0.22	0.22
Sequence Pattern (Morton order)	0.19	0.20	0.22	0.22

Our model outperform the baseline model by 40% for MRR and double Accuarcy@1.

Introduction 000000	Метноd 00000000	CLASSIFICATION RESULT	

CLASSIFICATION RESULT

Some intuitive examples

Figure 5 From left to right, images of a restaurant, a hotel, and a museum from Yelp, Google Street View, and Google Maps respectively. The first image is incorrectly classified as library using all 4 CNN models and it is correctly classified as restaurant using the spatial sequence pattern (distance) models. The second image is classified as hospital and library by the original CNN models and is classified as hotel by the spatial sequence pattern (distance) models. For the third image the correct label museum is in the third position in the label rankings of all 4 CNN models while, using the spatial sequence pattern (distance) models, ResNet18 and ResNet50 can correctly label it and in the label rankings of AlexNet and DenseNet161 museum is in the second position.

			CONCLUSION
000000	0000000	00	•

Conclusion

- Classifying place types according to images of facades and interiors is hard
- Instead of purely rely on visual signal, combining it with spatial contexts (which is in most cases avaiabale anyway) leads to substantial improvements, e.g., increasing MRR by over 40% and doubling Accuracy@1
- Complex spatial sequence patterns can be captured using LSTM
- For future work, we can relax the need of POI datasets by using the classification results and uncertainty of images of nearby places to improve estimation of the currently seen place (modify our methods to work in a drive-by-typing mode)
- Test what we call the generalized spatial context hypothesis, namely that we can go beyond facades but apply the same idea of spatial context to tree, cars, and so on.