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A Semantically Enriched Visualization

Maps: extensively used to visualize GI and spatial
relationships.

Difficult to directly express non-spatial relationships (semantic
similarity) using such maps.
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A Semantically Enriched Visualization

A Semantically Enriched Visualization: An analogy of thematic
maps to visualize the distribution of geographic features in a
semantic space.

Points: Geographic Coordinates → Locations in the Semantic
Space

Polygons: Administration Regions/Continents → Semantic
Continents
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A Semantically Enriched Visualization

A Semantically Enriched Visualization:

Semantically similar entities are clusters within the same
region;

The distance between geographic features represents how
similar they are.
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A Semantically Enriched Visualization

In this work, a semantically enriched geospatial data
visualization and searching framework are presented.

We evaluate it using a subset of places from DBpedia.

Multiple techniques:

Paragraph Vector
Spatial Clustering
Concave Hull Construction
Information Retrieval (IR) Model
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A Semantically Enriched Visualization

A semantically enriched visualization resembles cartographic layouts
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The Workflow
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Paragraph Vectors Computing

Paragraph Vector (or called Doc2Vec) is a representation
learning method proposed by Natural Language Processing
community.

Idea: Give a collection of documents, Doc2Vec learns a
high-dimensional continuous vector (embedding) for each
document.

The cosine similarity between the learned document vectors
represents the semantic similarity between their
corresponding documents.
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Paragraph Vectors Computing

The two-layer neural network architectural of Doc2Vec
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Paragraph Vectors Computing

Outputs of Doc2Vec:

Embeddings of documents;

Embeddings of word tokens in the document corpus.
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Paragraph Vectors Computing

Data Source: All entities typed dbo:HistoricalPlace in
DBpedia (21010 places)

Each historic place has an abstract, comments, images, and
geographic coordinates.

Method: Doc2Vec Model (PVDM [4])

Textual data collection: Treat each place as a document
whose content is its abstract and comments
Textual data preprocessing: tokenization and lemmalization
Paragraph vector training: embedding dimention K = 300;
window size N = 10; learning rate α = 0.025
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Information Retrieval Model

Place Embeddings: the learned embedding of each historic
place from Doc2Vec.

Query Embeddings:
Utilize the Doc2Vec.infer vector() function from gensim’s
Doc2Vec package
The TF-IDF score weighted embedding based on word
embeddings of query word tokens
The simple average of the query tokens’ embeddings
after stop words removal

Semantic Similarity Score Function: the cosine similarity
between the query embedding and place embeddings

An API 1 is provided for the semantic searching functionality
among DBpedia historic places.

1http://stko-testing.geog.ucsb.edu:

3050/semantic/search?searchText=grave%20yard.

http://stko-testing.geog.ucsb.edu:3050/semantic/search?searchText=grave%20yard
http://stko-testing.geog.ucsb.edu:3050/semantic/search?searchText=grave%20yard
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Semantic Similarity Map Construction

Spatialization: how to construct an overview of the semantic
distribution of geographic entities such that it follows a
cartographic tradition (semantic continent).
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Semantic Similarity Map Construction

K-means clustering: group these place embeddings into different
clusters;

Try #(clusters) from 2 to 30 and
compute silhouette coefficient [5] of the
clustering results;

#(clusters) = 16 gives the highest
silhouette coefficient;

The descriptions of places in each cluster
are combined as one document;

Word clouds are produced from 10 word
with highest TF-IDF score;

Each cluster is named according to the its
top 10 words.

The word cloud for Education
cluster
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Semantic Similarity Map Construction

Dimension reduction: to visualize the semantic distribution of
geographic entities in a 2-dimensional space

Different dimension deduction methods including PCA and
t-SNE are experimented;

t-SNE performs best and the clusters derived from k-means
are still well separated.
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Semantic Similarity Map Construction

DBSCAN:

Although t-SNE produces a good
dimension reduction result, some
points are far away from their
cluster centroids and scattered in
the 2D space.

We apply DBSCAN [3] to each
projected k-means cluster to
extract the “core” parts of them.

Visual interpretation are used to
select the parameter combination
for DBSCAN. (Eps = 1.1 and
MinPts = 6)
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Semantic Similarity Map Construction

Concave Hull Construction: Chi-shape algorithm [2]

It first constructs a Delaunay triangulation;

It erodes the boundary by deleting boundary’s
edges until the longest edge less than a
threshold.

A normalized length parameter λp ∈ [1, 100]
controls this threshold;

To get optimal λp, a fitness score function [1] is
used to balance the complexity and emptyness
of the resulting concave hull.

φ(P,D) = Emptiness(P,D) + C ∗ Complexity(P)
(1)

P: the derived simple polygon; D: the Delaunay
triangulation of the corresponding point cluster.
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Semantic Similarity Map Construction

Concave Hull Construction:

We iterate λp from 1 to 100 and compute the average fitness
score of all point clusters produced by DBSCAN;

The optimal λp with the lowest average fitness score is 30.

The average fitness score for different λp among all DBSCAN clusters.
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Semantic Similarity Map Construction

Publishing the Semantic View Webmap in ArcGIS Online:

We publish this map as a webmap service in ArcGIS Online 2.

2http://www.arcgis.com/home/item.html?id=

7e15f98399ff4788a502fd04320bdafc

http://www.arcgis.com/home/item.html?id=7e15f98399ff4788a502fd04320bdafc
http://www.arcgis.com/home/item.html?id=7e15f98399ff4788a502fd04320bdafc
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Result

We have deployed a web-based user interface3 to showcase the
functionality using the historical places dataset.

the search result of “grave yard” in the semantic space

3http://stko-testing.geog.ucsb.edu:3050/

http://stko-testing.geog.ucsb.edu:3050/
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Result

the search result of “grave yard” in the geographic space
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Result

The pop-up window shows some basic information for
dbo:Istre Cemetery Grave Houses.
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Conclusion & Future Work

In this work, we presented a semantically enriched geospatial
data visualization and search framework.

In the future, the proposed methods have to be calibrated,
e.g., by setting the hyperparameters, based on results of
human participants testing.
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Paper

This work has been accepted to AGILE 2018.

Gengchen Mai, Krzysztof Janowicz, Sathya Prasad, Bo Yan.
Visualizing The Semantic Similarity of Geographic Features, In:
Proceedings of AGILE 2018, June 12 - 15, 2018, Lund, Sweden.
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