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Abstract

Web-scale knowledge graphs such as the global Linked Data cloud consist of billions of in-
dividual statements about millions of entities. In recent years, this has fueled the interest in
knowledge graph summarization techniques that compute representative subgraphs for a given
collection of nodes. In addition, many of the most densely connected entities in knowledge
graphs are places and regions, often characterized by thousands of incoming and outgoing
relationship to other places, actors, events, and objects. In this paper, we propose a novel
summarization method that incorporates spatially-explicit components into a reinforcement
learning framework in order to help summarize geographic knowledge graphs, a topic that
has not been considered in previous work. Our model considers the intrinsic graph structure
as well as the extrinsic information to gain a more comprehensive and holistic view of the
summarization task. By collecting a standard dataset and evaluating our proposed models,
we demonstrate that the spatially-explicit model yields better results than non-spatial models,
thereby demonstrating that spatial is indeed special as far as summarization is concerned.

Keywords: Geographic Knowledge Graphs, Graph Summarization, Reinforcement Learning,
Spatially-Explicit Models, Spatial Context
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1 Introduction1

Knowledge graphs and the technologies used to create them are intended to foster the creation, re-2
trieval, and reuse of human and machine readable structured data about real world entities such as3
places, events, actors, and objects using a graph-based representation (Paulheim, 2017). Recent ad-4
vances in related technology stacks such as knowledge graph-based question answering systems as5
well as the adoption by commercial companies have highlighted the success of knowledge graphs6
in both academia and industry. The formal representation of geographic feature types and their7
relationships has been a long standing interest of the GIScience community and geographic infor-8
mation has been recognized as a key component of (general purpose) knowledge graphs (Kuhn9
et al., 2014). In fact, a large number of entities in Wikidata1 — a sister initiative of Wikipedia to10
create a repository for structured information — are spatial and dedicated geospatial knowledge11
graph hubs such as LinkedGeoData2 contain billions of statements about geographic entities.12

In theory, today’s abundance of geographic data facilitates new research and more powerful13
question answering systems. From a more practical perspective, however, sifting through the data14
deluge becomes increasingly challenging. Ramscar et al. (2014) have shown that too much infor-15
mation may adversely influence our cognitive information-processing capacities and unavoidably16
result in lags and retrieval errors. As a result, researchers are working on ways to better present17
data for humans, such as interfaces and visualization tools to make knowledge graphs more user-18
friendly and more accessible for non-technical audiences. One novel area of study is knowledge19
graph summarization, namely selecting and identifying the property-value pairs that best represent20
the underlying entity from a large and convoluted graph (Cheng et al., 2011).21

The idea of summarizing a knowledge graph in a way such that the subgraph retains the signif-22
icant substructures and meaning, here prominent nodes and edges, of the original graph is intrigu-23
ing. However, this task is entangled with a lot of challenges, especially in the geospatial domain.24
One challenge is related to the inherently complex structure of graph data. Unlike other commonly-25
used structures such as the 1D sequence of natural languages and the 2D grids of images, graph26
structures are peculiar in their own ways. For example, on the global level, two graphs can be27
isomorphic, i.e., have the same structure, while they have distinct representations (e.g., labeling28
and visual representations). On the local level, substructures such as homophily and structural29
equivalence (Grover and Leskovec, 2016) coexist in the graph as proxies to encode the underlying30
patterns. In addition, since most knowledge graphs follow the so-called Open World Assumption31
(OWA) – which implies that there are possibly missing statements/triples in the knowledge graph32
without having to assume that those missing statements do not hold true in reality – the original33
structure of the graph might not represent the complete information. This adds another layer of34
complexity.35

As a result of the versatility and peculiarity of graph data, traditional methods that rely heavily36
on handcrafted features/rules (such as clustering coefficients and other graph summary statistics)37
for knowledge graph summarization are not sufficient enough because they do not generalize well.38
Another challenge is the subjectivity of the summarization criteria. The relative importance of a39
node (entity) or an edge (relation/property/predicate) in the knowledge graph is not universally40
defined and different application fields can interpret it differently. For instance, a knowledge graph41

1https://www.wikidata.org
2http://linkedgeodata.org
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that primarily models friendship relation among individuals may take advantage of the connec-42
tivity information (such as degrees, betweenness, closeness, or eigenvector centrality) to deter-43
mine important nodes in the summarization process. On the contrary, to summarize the DBpedia344
knowledge graph — a crowd-sourced community effort to extract structured information from45
various Wikimedia projects — where there are a large number of distinct relation types and the46
whole graph is densely connected, latent information embedded in the labels and abstracts of each47
entity and relation is required to determine the extent to which each component of the graph is48
related with one another in order to rank the relative importance. Besides the aforementioned chal-49
lenges, geographic knowledge graph summarization has its distinct challenges. Given the inherent50
richness of geospatial semantics (Yan et al., 2017, 2018), geospatial components such as spatial51
contexts play a significant role in understanding spatial entities and their dependencies. However,52
existing (knowledge) graph summarization methods (Liu et al., 2018) are not tailored towards the53
geospatial domain thus neglecting such special components. For instance, a summary about Santa54
Barbara, CA is also always a partial summary of California. As humans we give special weight to55
the places where important historic figures were born even if they spent their entire life somewhere56
else. Hence, every summary of the city of Ulm, Germany, e.g., the first paragraph of its Wikipedia57
article, lists Albert Einstein as notable resident despite his family moving to Munich a year after58
his birth. For Munich in turn, his name is not prominently featured in the city’s description. This59
may be related to the broader phenomenon of duration neglect (Fredrickson and Kahneman, 1993).60

In light of this, we propose to adopt a reinforcement learning-based approach to explicitly in-61
corporate spatial contextual information. Our method combines both intrinsic structure and extrin-62
sic information to help summarize geographic knowledge graphs as most domain-agnostic work63
(Cheng et al., 2011; Thalhammer et al., 2012; Thalhammer and Rettinger, 2014; Pirrò, 2015; Bast64
et al., 2015; Song et al., 2018) fails to consider the inherent richness of geospatial semantics. In65
fact, we believe that there is no prior work about geographic knowledge graph summarization at66
all – despite places such as Vienna, Austria being represented by tens of thousands triples in mod-67
ern knowledge graphs, and, hence, in desperate need for graph summarization. In order to strike68
the balance between diversity and uniformity in summarizing geographic knowledge graphs, our69
model utilizes the idea of distance decay and information entropy to determine the relatedness of70
different spatial/non-spatial entities.71

By intrinsic structure, we mean the graph structure where each entity is connected by prop-72
erties. We embrace the current trend of utilizing vector representations, namely translation-based73
embedding models (Bordes et al., 2013), to embed the structural information of knowledge graphs.74
The semantic information – by which we mean latent information encoded in natural language,75
and, hence, not directly available to structural analysis – of the knowledge graph is captured by76
the embeddings of entity and relation labels. For extrinsic information, we take advantage of the77
Wikipedia abstracts of different places (geographic entities) to guide our summarization process78
since these abstracts are exemplary summaries of each geographic entity produced by human in-79
genuity, and there is a clear tractable correspondence between Wikipedia articles and knowledge80
graphs (Auer et al., 2007; Bollacker et al., 2008; Vrandečić and Krötzsch, 2014). By combining81
reinforcement learning with knowledge graph embeddings, word embeddings, information theory,82
and spatial contexts, we aim to tackle the challenges mentioned above. Knowledge graph embed-83
dings efficiently encode the hidden structure of the graph. Word embeddings facilitate the transmis-84

3https://wiki.dbpedia.org/
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sion of semantic information in the knowledge graph to the summarization process. Information85
theory together with the reinforcement learning framework (guided by Wikipedia summaries) is86
employed to partially mitigate the subjectivity issue that impacts knowledge graph summariza-87
tion tasks. After all, Wikipedia abstracts provide relatively neutral (Nielsen, 2007; Greenstein and88
Zhu, 2012), curated, concise, and generic digests that highlight the distinctive and significant as-89
pects of different places. Spatial contexts are used to help recover missing links in the geographic90
knowledge graph and uncover the hidden geospatial patterns.91

The research contributions of this paper are as follows:92

• We utilize Wikipedia summaries to guide the geographic knowledge graph summarization93
process using reinforcement learning. Instead of mostly relying on intrinsic information,94
such as node groups in grouping and aggregation-based approaches and the number of bits95
needed to describe the graph in bit compression-based approaches, our approach reaps the96
complementary strengths of intrinsic information from the graph structure and extrinsic97
knowledge using Wikipedia summaries by framing the task as a sequential decision mak-98
ing process that can be optimized using reinforcement learning.99

• We account for the richness of geospatial semantics in geographic knowledge graphs and100
incorporate such information in the summarization process in order to better capture the101
relatedness of geographic entities and provide better results. We do so by following estab-102
lished GIScience methods, namely modeling distance decay, as well as from an information103
theoretic perspective.104

• We create a dataset DBP3694 that includes 369 place summaries from Wikipedia and a sub-105
graph of DBpedia for geographic knowledge graph summarization tasks and make it openly106
available. A lack of standard datasets has been one of the obstacles that hinder research107
development in the area of geographic knowledge graph summarization and to some degree108
geographic information retrieval in general. By taking the initiative to collect this dataset,109
we hope it will foster further research in this area.110

• We establish different baselines for the geographic knowledge graph summarization task for111
the DBP369 dataset. Our result shows that by considering spatial contextual components the112
summarized graph better resembles the Wikipedia summary.113

• Finally, to the best of our knowledge this is the first research to consider the problem of114
geographic knowledge graph summarization. This is remarkable as Web-scale knowledge115
graphs such as Linked Data store tens of millions of places and often thousands of statements116
(subject-predicate-object triples) about them.117

The remainder of this paper is organized as follows. Section 2 summarizes existing work on118
knowledge graph summarization, spatially-explicit models, and utilizing reinforcement learning119
in the context of knowledge graphs. Section 3 describes the basic procedure of our data collec-120
tion and provides detailed information about the DBP369 dataset. Section 4 explains the pro-121
posed method for geographic knowledge graph summarization. Section 5 applies the model to the122
DBP369 dataset and evaluates the results. Section 6 concludes the research and points to directions123
for future work.124

4http://stko.geog.ucsb.edu/gkg/
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2 Related Work125

Most graph summarization techniques fall into one of the four categories (Liu et al., 2018) namely:126
grouping or aggregation-based approaches, bit compression-based approaches, simplification or127
sparsification-based approaches, and influence-based approaches. Knowledge graph summariza-128
tion usually adopts the simplification or sparsification-based approach for the reason that the prime129
motivation for summarizing knowledge graphs is to provide a subgraph that highlights the impor-130
tant entities and relations of the original graph. Cheng et al. (2011) and Thalhammer and Rettinger131
(2014) proposed to utilize the graph structure and performed PageRank to identify relevant entities132
and summarize the graph. Pirrò (2015) formalized the notion of relatedness in knowledge graphs133
to better harness the large variety of information. While these papers primarily take advantage of134
the intrinsic information of knowledge graphs, some work is geared towards extrinsic knowledge.135
For instance, Bast et al. (2015) utilized textual information from Wikipedia to build logistic regres-136
sion and generative models to calculate relevance scores for relations in knowledge graph triples.137
Our work takes the best of both worlds by considering intrinsic knowledge graph structure and138
extrinsic information simultaneously.139

In addition, all the work mentioned above aims at retrieving/ranking entities/relations based140
on certain criteria such as relevance scores with respect to a user’s queries rather than providing141
a subgraph that captures the essence of the original graph. Our work provides a subgraph that142
summarizes the relations and connected entities for each geographic entity based on correspond-143
ing Wikipedia abstracts. With the recent trend towards learning latent representations of graphs144
(Hamilton et al., 2017), methods based on matrix factorization strategies (such as Singular Value145
Decomposition (SVD), CUR (Drineas et al., 2006), and Compact Matrix Decomposition (CMD)146
(Sun et al., 2007)) have been used in which low-rank approximations of adjacency matrices are147
viewed as sparse approximation summaries of the original graphs. Our work embraces the idea148
of adopting a more scalable neural network-based approach, namely the TransE (Bordes et al.,149
2013) model, to learn low-dimensional latent knowledge graph representations and applying these150
embeddings within our summarization pipeline.151

In order to study the influence of geospatial contexts on identifying different types of places,152
Yan et al. (2017) proposed a latent representation learning method based on augmented spatial con-153
texts. Similarly, Yan et al. (2018) used spatial sequence patterns of neighborhoods as Bayesian pri-154
ors and combined them with state-of-the-art convolutional neural network models to help improve155
image classification for different place types using data collected from Yelp and Google Street156
View. Mai et al. (2019) incorporated geographic weights into the latent representation learning157
process in order to provide better knowledge graph embeddings for geographic question answering158
tasks. Our work, follows the same line of reasoning, namely that spatially-explicit models substan-159
tially outperform more general models when applied to geographic data. Kejriwal and Szekely160
(2017) presented a geospatial data source generated using weighted neural embeddings methods161
on Geonames5 data. The resulting embeddings encode geographic contextual information.162

Researchers working on knowledge graphs have been exploring different ways in which re-163
inforcement learning can be used. For example, Xiong et al. (2017) adopted the REINFORCE164
(Monte Carlo Policy Gradient) algorithm (Williams, 1992) to make a policy-based agent learn165
multi-hop relational paths for knowledge graph reasoning tasks by considering accuracy, diversity,166

5https://www.geonames.org/
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and efficiency in their reward function. Das et al. (2017) framed the knowledge graph reasoning167
task as a finite horizon, deterministic partially observable Markov Decision Process (MDP) and de-168
signed a randomized non-stationary history-dependent policy parameterized by a long short-term169
memory network (LSTM) (Hochreiter and Schmidhuber, 1997). Shen et al. (2018) developed the170
M-Walk graph-walking agent using recurrent neural network (RNN) to encode the history of the171
walked path and Monte Carlo Tree Search (MCTS) with a neural policy to generate trajectories172
yielding more positive rewards to overcome the challenge of sparse rewards under the off-policy173
Q-learning framework for knowledge graph completion. However, none of these approaches used174
a geographic dataset. Moreover, our work is based on the novel idea of treating the geographic175
knowledge graph summarization task as an MDP and the decision at each summarization step is176
made by the reinforcement learning agent.177

3 Dataset178

Given the lack of existing work on geographic knowledge summarization and related benchmarks,179
we collected the dataset DBP369 for our research and hope it can be adopted in similar research180
studies in the future. Previous research efforts that explored similar datasets focused on city net-181
works (Salvini and Fabrikant, 2016; Zhang and Thill, 2019). We initially picked 500 places from182
different areas of the world, as shown in Fig. 1. In this work, we would like to explore the183
possibility of guiding the summarization process of geographic knowledge graphs by means of un-184
structured human knowledge. There are two parallel parts of our dataset: 1) Wikipedia summaries185
of each of these places, 2) A geographic knowledge graph containing each of these places and186
their related entities. These places include well-known metropolitan areas such as New York City

Figure 1: Place distribution map (Eckert IV).

187
and Los Angeles as well as areas with archaeological and historic significance such as Olympia,188
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Greece. We used the MediaWiki API6 to find the corresponding Wikipedia pages for these places,189
from which summary texts were extracted. These summaries provide a human-generated guidance190
for summarizing geographic knowledge graphs.191

For the geographic knowledge graph part, we selected DBpedia as our data source, as it has192
numerous geographic entities, is being actively maintained and updated, has a clear one-to-one193
correspondence for each Wikipedia article, and provides a diversified and comprehensive cov-194
erage of properties. In order to construct our geographic knowledge graph from DBpedia, we195
prepared these 500 places from Wikipedia and retrieved all links that appeared in the summaries196
of these 500 articles. We generated mappings to find the corresponding entities for these places197
as well as the links. After obtaining these seed entities, we generated SPARQL7 queries to re-198
trieve 1-degree and 2-degree neighbors iteratively in order to form subgraphs surrounding these199
seed nodes. In DBpedia all statements are organized as (head, relation, tail) or (subject, predi-200
cate, object) triples. Query 1 shows an example query that uses a basic graph pattern to obtain201
1-degree (both incoming and outgoing) neighboring nodes of DBpedia entity dbr:Los Angeles.202

PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT * WHERE {{
dbr:Los_Angeles ?p1 ?o .
FILTER(CONTAINS(str(?p1),’http://dbpedia.org/ontology/’) && !isLiteral(?o))}
UNION {
?s ?p2 dbr:Los_Angeles .
FILTER(CONTAINS(str(?p2),’http://dbpedia.org/ontology/’) && !isLiteral(?s))}}

Listing 1: An example SPARQL query for retrieving the 1-degree neighbors for dbr:Los Angeles,
using it as both the head (subject) and the tail (object) entity.

203

We only considered relations with prefix http://dbpedia.org/ontology/ since these mapping-based204
relations have a much higher quality. For the purpose of our modeling strategy, we further removed205
duplicate triples/statements and filtered out entities that appeared less than 10 times. In the end we206
obtained a dataset that contains 369 Wikipedia place summaries and a DBpedia subgraph that con-207
nects these 369 place entities with various other spatial and non-spatial entities, e.g., historical208
figures, via different relations, thus forming our geographic knowledge graph.209

For the 369 places, the average length for the Wikipedia summary is 299 words and each210
summary on average contains 28 links. For the geographic knowledge graph, there are all together211
419,579 entities, 534 unique relations, and 3,248,715 triples/statements. The data is split into a212
training set of 334 places and a test set including 35 places. Fig. 2 shows a slice of our dataset.213
The text in the middle is part of the summary for Los Angeles (dbr:Los Angeles) and the graph214
surrounding the text illustrates the way in which different entities are connected with each other.215
We highlight the correspondence between the links in the summary and DBpedia entities.216

4 Methods217

In this section, we introduce our spatially-explicit reinforcement learning method. Instead of prun-218
ing the graph as explored by previous studies (Song et al., 2018), we decide to tackle the problem219

6https://en.wikipedia.org/w/api.php
7https://www.w3.org/TR/rdf-sparql-query/
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Los Angeles is one of the most substantial economic
engines within the United States, with a diverse
economy in a broad range of professional and cultural
fields. Los Angeles is also famous as the home
of Hollywood, a major center of the world entertainment
industry.

dbo:birthPlace
dbr:United_States

dbr:Los_Angeles

dbr:Hollywood

dbr:Leonardo_DiCaprio

dbo:isPartOf

dbr:California

dbo:isPartOf

dbo:isPartOf

dbr:Titanic_(1997_film)

dbo:starring

dbr:Malibu,_California
dbo:director

dbr:James_Cameron

dbo:residence

dbo:isPartOf

Figure 2: Three links Los Angeles, United States, and Hollywood in this text are mapped to three
entities dbr:Los Angeles, dbr:United States, and dbr:Hollywood respectively. By retrieving the
1-degree and 2-degree neighbors of these entities, we are able to find their connections as well as
information about other related entities.

in a reverse manner. We formulate the task as a sequential decision making problem where we220
start from the simplest graph, namely a single node (the geographic entity in question), and it-221
eratively propose to make the graph more complex and expressive by sequentially adding new222
relations (edges) and entities (nodes) through trial and error until the graph representation closely223
resembles Wikipedia’s textual summary. We first introduce the reinforcement learning model by224
explaining the basic components such as the environment, agent, actions, states, and rewards. Our225
policy-based agent learns to pick meaningful relations by interacting with the geographic knowl-226
edge graph environment. Then we describe the training pipeline where the model is first trained227
on a supervised policy followed by being retrained using the reward function.228

4.1 Reinforcement Learning Framework229

The geographic knowledge graph summarization task is formalized as a Markov Decision Process230
(S,A, Pa, Ra) where two components, namely the environment and the agent, interact with each231
other, as shown in Fig. 3. S = {s1, s2, ..., sn} is a set of states that contains useful information232
from the history of the MDP. A = {a1, a2, ..., an} is a set of actions that the agent can take for the233
state provided by the environment. Because of the memorylessness of the MDP, the state transition234
probability matrix Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) represents the probability of reaching235
state s′ at time t + 1 after the agent takes action a in state s at time t. Ra(s, s

′) is the immediate236
reward after taking action a and transitioning from state s to state s′.237

To intuitively understand the process, let us suppose the MDP starts with a graph that is com-238
posed of the place entity itself and the Wikipedia summary of the place. At each step, the agent239
analyzes the current state (by considering information about the graph as well as the Wikipedia240
summary) of the process and decides to add one of the possible relations to the graph to grow it241
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dbr:Washington,_D.C. 

dbr:United_States 

dbo:capital

dbr:United_States_Department_of_State 

dbo:headquarter

dbr:Foreign_Policy 
dbo:city

dbr:Bureau_of_Land_Management 

dbo:location

dbr:Georgetown_University 
dbo:city

spatial

dbr:Institute_of_Medicine 

dbr:National_Geographic_(magazine) 
dbo:city

spatial

dbr:United_Negro_College_Fund 

spatial

dbr:White_house 

dbo:birthPlace
dbr:Whitfield_Diffie dbo:birthPlace

dbr:George_W._Getty 

dbo:deathPlace

dbr:Michael_Mussa 
dbo:deathPlace

dbo:birthPlace

The Geographic Knowledge Graph Environment

Place Entity to Summarize: dbr:Washington,_D.C. 

ReLU

ReLU

Softmax

State

Reward

Action

Current Label
Embedding

Target - Current
Label Embedding

Current Entity
Embedding

Target - Current
Entity Embedding

Policy-Based Agent

Figure 3: The geographic knowledge graph environment and the policy-based agent interact with
each other in the reinforcement learning model. The graph environment on the left shows how the
place entity dbr:Washington, D.C. is connected with other spatial/non-spatial entities via various
relations. The agent on the right interacts with the environment in the MDP and learns to pick
relations to help summarize the graph.

in the hope of more closely resembling the Wikipedia abstract. The agent gets a certain amount242
of reward depending on the extent to which this step was successful in reaching this goal. When243
the process terminates, i.e., an episode of MDP has been conducted, the graph is expected to be a244
good summary of the original geographic knowledge graph for this place. The goal of the agent245
is to maximize the amount of reward it receives. During this process, the agent is learning to dis-246
cover the sweet spot on the spectrum between information deficit (a graph with a single node for247
the place entity itself) and information overload (the whole geographic knowledge graph contain-248
ing 419,579 nodes) by considering the textual summarization counterpart, namely the Wikipedia249
abstract. In order to balance the trade-off between exploration and exploitation, the behavior of250
the agent is defined by the stochastic policy π(a|s) = Pr(at = a|st = s) which is a probability251
distribution that determines the likelihood of the agent taking action a in state s at time step t.252

In our model, the policy network (shown in Fig. 3) is used to learn an approximation function253
that captures the dynamics of the interaction and to parameterize the policy πθ(a|s) of the agent.254
It is a fully-connected neural network with two hidden layers. Rectified Linear Units (ReLU) are255
used as activation functions in the hidden layers and the softmax function is used in the output256
layer to generate probabilities for each possible action. Before diving into the training pipeline, we257
further explain each concept in the context of our summarization task.258

4.2 States259

The states capture the information in the MDP. Since our model aims to capture both intrinsic and260
extrinsic information, we utilize the geographic knowledge graph structure as well as the semantic261
information from the Wikipedia summaries.262

Since there are more than 400,000 entities in our geographic knowledge graph, modeling them263
as discrete atomic symbols using one-hot vectors in the states is not feasible. In order to provide a264
condensed representation of the entities, we use the translation-based knowledge graph embedding265
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approach (TransE) (Bordes et al., 2013). The TransE model provides a scalable and generic way266
to embed nodes and edges in a heterogeneous graph into the same vector space. More concretely,267
heads, tails and, relations are represented as vectors vhead, vtail, and vrelation respectively. The268
TransE model assumes that vhead + vrelation = vtail holds for the triple (head, relation, tail). By269
considering the relations in the graph as translations in the embedding space, the model extracts270
local and global connectivity patterns between entities. The intrinsic structures of the graph are,271
thus, embedded in these latent representations of entities and relations. The states in the MDP are272
supposed to help the agent understand the current environment in order to make decisions about the273
next step. In this case, the entity embeddings can help capture the progress in the summarization274
process with respect to the Wikipedia summary. We use the sum of the entity embeddings zt =275 ∑

i∈Et ei in the current summarization graph at step t to capture the intrinsic structural information276
where ei is the embedding for entity i in a set of entities Et.277

As these entities also appear as links in Wikipedia summaries, we denote the sum of the embed-278
dings of entities from a target Wikipedia place summary as ztarget =

∑
i∈Etarget ei where Etarget is279

a set of entities that appear in the target Wikipedia place summary. The intrinsic component of the280
state representation is defined as sintrinsict = (zt, ztarget − zt) where the first component (left) en-281
codes the structure of the summarization graph at step t and the second component (right) encodes282
the gap between the current graph structure zt and the desired structure ztarget.283

For the extrinsic component of the state representation sextrinsict , we consider the labels of the284
entities and relations in the graph as well as the Wikipedia text summary. Neural word embeddings285
have proven to be an efficient and effective way of encoding meaning of words in our natural286
languages (Mikolov et al., 2013a,b). We adopt the fastText word embedding model proposed by287
Bojanowski et al. (2017) as it handles out-of-vocabulary words and considers the morphology of288
words by viewing each word as a bag of character n-grams.289

After obtaining the word embeddings using the fastText model, we use the sum of the entity290
label and relation label embeddings ht =

∑
l∈Lt vl to help capture the semantic information of291

the graph at step t. In order to obtain the latent representation of the Wikipedia textual summary,292
we utilize the Smooth Inverse Frequency (SIF) embedding approach to generate paragraph embed-293
dings htarget using the word embeddings. The theoretical justification of this method is provided294
by Arora et al. (2017). The idea is to multiply each word vector vw by the inverse of its probability295
of occurrence p(w). Here α is a smoothing constant and is set to 0.001 by default. We then obtain296
h

′
target by summing these normalized and smoothed word vectors and dividing them by the number297

of words |W |:298

h
′

target =
1

|W |
∑
w∈W

α

α + p(w)
vw (1)

As suggested by Arora et al. (2017), we obtain the matrix representation of all 369 Wikipedia299
summaries and remove the first principal component from this matrix to generate the final embed-300
dings htarget for each Wikipedia place summary because the top singular vector tends to contain301
syntactic information and removing it cleans up the embeddings’ ability to better express semantic302
information.303

Similar to the intrinsic component, the extrinsic component of the state is represented as304
sextrinsict = (ht,htarget − ht) and the state representation is a concatenation of these two com-305
ponents:306

st = (sintrinsict , sextrinsict ) = (zt, ztarget − zt,ht,htarget − ht) (2)
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After calculating state representations, the cosine distance is calculated between the current307
graph and the target Wikipedia summary for both entity embeddings and label embeddings, de-308
noted as distzt = 1−cos(zt, ztarget) and distht = 1−cos(ht,htarget) respectively. The termination309
of the process is decided by:310

T =

{
1, if distzt 6

distz1
2

or distht 6
disth1

2

0, otherwise
(3)

where distz1 and disth1 denotes the initial cosine distance between the subgraph and the Wikipedia311
summary for entities and labels respectively. The process terminates if T = 1. This means that if312
either the cosine distance for entity embeddings or label embeddings is at most half of the initial313
cosine distance the process will terminate.314

4.3 Actions315

Given the place entity and Wikipedia summary, the agent aims to choose actions that iteratively316
leads to a better summary of the geographic knowledge graph for the place in question. Starting317
from the initial state s0, the policy network (shown in Fig. 3) outputs the probability of choosing318
each action a. Since there are 534 unique relations in our geographic knowledge graph, the normal319
action space is of size 534.320

After the agent takes an action and decides to add a relation to the current subgraph, the en-321
vironment checks possible ways of connecting the entities on the current subgraph with potential322
new entities via the chosen relation. Let us suppose (by checking the graph) that there are n poten-323
tial triples to be added to the current subgraph. Each triple contains an entity that is already in the324
graph, the chosen relation, and a new entity (either a head or a tail entity) to be added. We use the325
index i to denote the new entity where 1 6 i 6 n and triplei to denote the corresponding triple for326
entity i. Our model picks the triple (and the new entity) among all candidate triples from a distri-327
bution where the probability for each triple p(triplei) is proportional to the information content of328
the new entity:329

p(triplei) =
− log(p(i))∑n
j=1− log(p(j))

(4)

where p(i) is the probability of encountering entity i in the whole geographic knowledge graph and330
− log(p(i)) is its information content. The rationale behind this approach is that entities that are331
rich in information content carry latent information that can more efficiently enrich our knowledge332
about the place we wish to summarize.333

In addition to the normal 534 actions, we also propose a novel step by including a dedicated334
spatial action to make the model spatially-explicit. This idea stems from the data-driven approach335
that exploits the hidden patterns of geographic data (Janowicz, 2012) and is inspired by previ-336
ous work on spatially-explicit models where spatial contextual information facilitates place type337
embeddings (Yan et al., 2017), image classification for places (Yan et al., 2018), and geographic338
question answering (Mai et al., 2019). Following a similar school of thought, we aim to utilize339
spatial context to help improve geographic knowledge graph summarization. Another reason to340
incorporate this special spatial action is that, as mentioned in Section 1, it helps in discovering341
missing links in the geographic knowledge graph by connecting spatially related entities together.342
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Simply put, a human (textual) summary of San Diego will include the adjacent border with Mex-343
ico. However, such adjacency relation does not exist in DBpedia, and, hence, Tijuana (and Mexico344
in general) would not be reachable within the graph for the agent.345

The spatial action itself is modeled as an extra action that the agent can take at any step t.346
However, if the agent decides to take a spatial action, our model only gathers candidates that are347
geographic entities and are not connected with any entities in the current subgraph directly. We348
execute a spatial query retrieving all geographic entities within k-meter radius of the place we want349
to summarize. Our spatially-explicit model selects one geographic entity among these candidate350
geographic entities from a distribution where the probability for each candidate p(i) is proportional351
to the inverse of the distance between the candidate and the place q in question:352

p(i) =
d(i, q)−1∑n
j=1 d(j, q)

−1 (5)

where d(i, q) denotes the geodesic distance between candidate i and place q. This inverse distance353
strategy favors nearby geographic entities over distant ones. While the spatial radius buffer gives354
a local geographic view around the center place entity, we also propose to incorporate a global355
view that is modeled by the PageRank score of each entity in the whole geographic knowledge356
graph (Mai et al., 2018). Intuitively, some places, e.g., landscape features, are characteristic for an357
entity to be summarized despite their distance due to their overall importance. Mount Fuji is such358
an example despite its distance of over 100 km from Tokyo. Each entity is assigned a score pri359
after running the PageRank algorithm. This score represents the relative importance of each entity360
in the graph by examining the incoming and outgoing link connections. By combining the global361
graph view and the local geographic view, we propose to use a weighted inverse distance in the362
probability calculation:363

p(i) =
prid(i, q)

−1∑n
j=1 prjd(j, q)

−1 (6)

After deciding on the relations and entities to add into the subgraph through either spatial or non-364
spatial actions, new state representations are generated using the methods explained in Section 4.2365
and the new state is then presented to the agent to help it decide on the next action.366

4.4 Rewards367

The reward function plays an important role in guiding the agent to summarize the geographic368
knowledge graph as the goal of our reinforcement learning model is to find an optimal behavior369
strategy for the agent to obtain optimal rewards. In our model, there are three components in the370
reward function, namely similarity score, diversity score, and connection score.371

In order to help the agent select the actions (relations) that make the subgraph representation372
resembles the Wikipedia summary representation from such a large action space, an intuitive way is373
to incorporate such mechanism in the immediate reward. In addition to cosine distance calculated374
after the agent takes an action as described in Section 4.2, the cosine similarity is also calculated.375
The normal similarity score is then defined as the sum of the cosine similarities:376

rnormalsimilarity = cos(zt, ztarget) + cos(ht,htarget) (7)
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where larger cosine similarity values will result in higher scores for the reward component377
rnormalsimilarity. Moreover, considering the fact that sometimes the TransE model does not handle one-378
to-many and many-to-many relationships well (Bordes et al., 2013) and summing or averaging the379
entity embeddings may exacerbate such issues because the connectivity information of individual380
nodes/entities may be dwarfed by the crude aggregation of other nodes/entities, we propose to sub-381
stitute the entity similarity score cos(zt, ztarget) by another measurement to highlight the difference382
of the intrinsic structure between the subgraph and the Wikipedia summary. Such a measurement383
is inspired by the Hausdorff distance commonly-used to measure the difference between two ge-384
ometries. Instead of using a metric such as Euclidean distance as in Hausdorff distance, we use385
cosine distance because it is insusceptible to the change of magnitude of embedding vectors. This386
measurement is defined as:387

simmaxmin(Et, Etarget) = 1−max
i∈Et

min
j∈Etarget

(1− cos(ei, ej)) (8)

whereEt is a set of entities on the subgraph at time step t,Etarget is a set of entities in the Wikipedia388
summary, and ei and ej are entity embeddings for entity i and j respectively. The max-min simi-389
larity score is then defined as:390

rmaxminsimilarity = simmaxmin(Et, Etarget) + cos(ht,htarget) (9)

While there are 535 possible relations/actions (including the spatial action), these relations391
follow a long-tail distribution, which might lead the agent to pick the most possible relations in392
order to avoid penalties. In addition, a good graph summary should exhibit a balance between393
diversity and uniformity. In light of this, we propose to incorporate a diversity score into the394
reward function:395

rdiversity =

{
+0.5, if relation is not already on the subgraph
−0.5, otherwise

(10)

Since it is possible that the model might pick relations and entities that are not directly con-396
nected to the place entity in question, we would like to discourage such behavior. For example,397
to summarize dbr:Los Angeles, the model might add new triples regarding dbr:California (be-398
cause dbr:California became part of the subgraph for dbr:Los Angeles at some point) instead of399
dbr:Los Angeles. This behavior is the result of the data bias in knowledge graphs (Janowicz et al.,400
2018) as prominent entities are safer for the model to target and would mislead the model to401
summarize the wrong place. In order to alleviate this potential issue, we propose to include the402
connection score:403

rconnection =

{
+0.5, if entity is directly connected to the place
−0.5, otherwise

(11)

The reward function is then defined as the combination of the three components:404

R = rsimilarity + rdiversity + rconnection (12)

It is worth noting that simply reducing relations to be selected from 1-degree queries relative405
to the entity to be summarized would not be a suitable solution. This would restrict the summary406
subgraph to a star-shape.407
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4.5 Training Procedure408

As mentioned in Section 4.1, we use a policy-based method to train our spatially-explicit reinforce-409
ment learning model. The advantage of policy-based methods over value-based methods such as410
Q-learning (Watkins and Dayan, 1992) and SARSA (Rummery and Niranjan, 1994) is that they411
solve an easier problem by optimizing the policy π directly, can provide a stochastic policy, and412
can be applied to a wider range of problems where the state space is large or even continuous. The413
objective of the policy-based method is to maximize the total future expected rewards J :414

J(θ) = Es∼Pr(s),a∼πθ(a|s)R(s, a) (13)

Following the REINFORCE (Monte Carlo Policy Gradient) method (Williams, 1992), the policy
network is updated using the gradient:

∇θJ(θ) = Es∼Pr(s),a∼πθ(a|s)Q(s, a)∇θ log πθ(a|s)

≈ 1

N

N∑
i=0

∑
s,a∈epsi

Q(s, a)∇θ log πθ(a|s)
(14)

where N episodes eps are sampled from the process, Q(st = s, at = a) = E[Gt|st = s, at = a] is415
the expected return starting from state s after taking action a, and the return Gt =

∑∞
k=0 γ

kRt+k+1416
is the total discounted reward from time step t with discount factor γ ∈ [0, 1]. A low γ value417
implies that the agent is myopic in evaluating the situation and values immediate reward over418
delayed future reward. In addition, similar to the idea of diversity reward in Section 4.4, we419
include the entropy of the policy as a regularization term in the optimization where we encourage420
a more diversified set of actions. The entropy is defined as:421

H(θ) = −
∑
a∈A

πθ(a|s) log πθ(a|s) (15)

In order to maximize the total future expected rewards J and the entropy H , the loss function is422
formulated as:423

LREINFORCE = −(J + αH) (16)

where α is the regularization factor.424
Due to the size of the action space, it would be challenging for the policy agent to learn to pick425

actions purely based on trial and error. In order to solve this problem and inspired by imitation426
learning (Hussein et al., 2017) and the training pipeline proposed by Silver et al. (2016), we first427
train our model with supervised learning and then retrain the supervised policy with the proposed428
reward function to learn summarizing the geographic knowledge graph.429

For the supervised learning stage, we use the links in Wikipedia summaries to help gather430
positive training samples. We query the whole graph to check if the links in the Wikipedia place431
summary are directly connected to the place entity itself and keep track of these connections.432
In addition, in order to learn about the spatial action as well, we randomly incorporate nearby433
geographic entities via the special spatial relation. This procedure is applied to every place in the434
training place set in order to get our positive training samples for the supervised learning. A reward435
of +1 is used for each step in these positive training samples. After the supervised training stage,436
we retrain the model using the reward function described in Section 4.4 to help the agent pick up437
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desired relations to better summarize the graph. Summarizing one place is considered an episode438
eps. The model starts with a single node (the place entity itself) for the graph and follows the439
stochastic policy π(a|s) to iteratively add relations. We limit the maximum length of the episode440
with an upper bound max eps len to improve the training efficiency.441

5 Experiment and Results442

In this section, we explain our experiment setup for the model, describe the evaluation metrics used443
to test the model performance, and present our results and findings.444

5.1 Implementation Details445

Since we use 50-dimensional vectors for both entity and label embeddings, the resulting state446
representations are 200-dimensional vectors (see Eq. 2). For spatial action, we use a search radius447
of k = 100, 000 meters in our geopatial query. The discount factor γ for the cumulative reward448
we use in the model is 0.99. In the policy network, the first hidden layer has 512 units and the449
second hidden layer has 1024 units. The Adam Optimizer (Kingma and Ba, 2014) is used to450
update the parameters in the policy network. The upper bound for the episode length is set to451
max eps len = 20.452

Different alternative settings are proposed for actions and rewards in Section 4.3 and Section453
4.4 respectively. The alternatives in the actions component are non-spatial actions vs. spatial ac-454
tions and unweighted inverse distance (Eq. 5) vs. PageRank-weighted inverse distance (Eq. 6).455
The alternatives in the reward component are rnormalsimilarity vs. rmaxminsimilarity. In order to better under-456
stand the contribution of different component alternatives and to test our assumption that spatially-457
explicit models are superior in modeling geographic data, we examine our method with differ-458
ent combinations of these alternatives, resulting in 5 models, namely RLnonspatial−normal (model459
without spatial actions using rnormalsimilarity score), RLspatial−normal (model with spatial actions us-460
ing rnormalsimilarity score), RLnonspatial−maxmin (model without spatial actions using rmaxminsimilarity score),461
RLspatial−maxmin (model with spatial actions using rmaxminsimilarity score), and RLspatial−maxmin−pr462
(model with spatial actions and PageRank-weighted inverse distance using rmaxminsimilarity score).463

5.2 Results464

To evaluate the models, we consider the intrinsic and extrinsic components separately. For the465
summarization results, we would like to see the improvements of using our summarization ap-466
proach compared with the initial information, i.e., we compute the difference between the cosine467
similarity of the summarized graph and the Wikipedia summary and the cosine similarity of the468
initial place entity/label and the Wikipedia summary:469

diffentity = cos(zT , ztarget)− cos(z1, ztarget) (17)

470
difflabel = cos(hT ,htarget)− cos(h1,htarget) (18)
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where diffentity ∈ [−2, 2] and difflabel ∈ [−2, 2] are the difference of cosine similarities between471
entity and label embeddings and zT and hT are the final entity and label embeddings for the sum-472
marized graph. Higher diff scores show better summarization results. In addition to this evalua-473
tion metrics, we also calculate the Mean Reciprocal Rank (MRR) score for these 5 models. We474
calculate the cosine similarity scores between the summarized graph of the place with all 35 can-475
didate places in our test set and then rank them. We record the rank position of the corresponding476
Wikipedia place summary for each place entity, take the reciprocal of the rank, and then calculate477
the mean of these reciprocal ranks for all 35 places in the test set. Higher MRR scores correspond478
to better model performance.479

Table 2 and Table 3 show the diffentity and difflabel scores for all 35 test places. As we can see,480
on average all 5 models show positive diffentity and difflabel scores, implying that these models are481
effective in creating subgraphs that resemble the Wikipedia summary, thus facilitating the sum-482
marization of these places. In general, the scores for the intrinsic component diffentity are lower483
than the ones for the extrinsic component difflabel for the same place and on average. One reason484
might be that the TransE model takes into account the local and global connectivity information485
of entities and since the place entity itself is usually closely connected with the Wikipedia links486
for this place entity the initial single-node graph z0 tends to be quite similar to ztarget, making487
further improvements less prominent. On average, incorporating the spatial action or using the488
rmaxminsimilarity component in the reward function helps improve the performance and including both489
further improves the result. The best model is RLspatial−maxmin−pr for both the intrinsic diffentity490
and extrinsic difflabel components. On average it has a 147% and 90% increase compared with the491
RLnonspatial−normal model for the intrinsic and extrinsic components respectively.

Table 1: MRR result for 5 models.

Entity Label
RLnonspatial−normal 0.9190 0.6975
RLspatial−normal 0.9380 0.7183
RLnonspatial−maxmin 0.9428 0.7095
RLspatial−maxmin 0.9571 0.7396
RLspatial−maxmin−pr 0.9523 0.7742

492
By examining the results in Table 2 and Table 3 for RLspatial−normal and RLnonspatial−maxmin,493

we can see that adding the spatial action is beneficial for the model to capture more semantic infor-494
mation and using the rmaxminsimilarity reward component facilitates the model to capture intrinsic struc-495
tural information as the difflabel result is better for RLspatial−normal than for RLnonspatial−maxmin496
and vice versa in the case of diffentity. The MRR result in Table 1 aligns with our findings.497

Fig. 4 and Fig. 5 show the summarization results for dbr:Washington, D.C. and498
dbr:Guangzhou using the RLspatial−maxmin−pr model. The model learns to pick different rela-499
tions such as dbo:capital, dbo:city, dbo:headquarter, dbo:location, dbo:isPartOf, and the spatial500
relation. In the case of dbr:Washington, D.C., the relationship between dbr:White House and501
dbr:Washington, D.C. is missing in the original geographic knowledge graph. Without the spa-502
tial relation, such certainly important information would have been lost. Our spatially-explicit503
model outperforms non-spatial models. In the case of dbr:Guangzhou, as we incorporate the con-504
nection reward rconnection into the model, it refrains from summarizing other entities even though505
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dbr:Washington,_D.C. 

dbr:United_States 

dbo:capital

dbr:United_States_Department_of_State 

dbo:headquarterdbr:Foreign_Policy 

dbo:city

dbr:Bureau_of_Land_Management 
dbo:location

dbr:Georgetown_University 

dbo:city

spatial dbr:Institute_of_Medicine 

dbr:National_Geographic_(magazine) 

spatial
dbo:city

dbr:United_Negro_College_Fund 

spatial

dbr:White_house 

Figure 4: Summarization result for dbr:Washington, D.C..

dbr:Guangzhou dbr:Sun_Yat-sen_University 
dbo:city

dbr:A_Road_and_a_Will 

dbo:location

dbr:Super_Girl_(TV_series) 

dbo:location

dbr:Panyu_District 

dbo:isPartOf
spatial

dbr:South_China_University_of_Technology 

dbr:Guangdong 
dbo:isPartOf

dbo:isPartOf

dbr:Pearl_River_Delta 

location 

dbr:Yuexiushan_Stadium 

dbr:Macau 
dbo:isPartOf

dbr:China_Southern_Airlines 

dbo:headquarter

dbr:Guangshen_Expressway 

dbo:city 

Figure 5: Summarization result for dbr:Guangzhou.

dbr:Macau is included in the subgraph at some point.506

6 Conclusions and Future Work507

In this research, we introduced and motivated the need for geographic knowledge graph summa-508
rizations and proposed a spatially-explicit reinforcement learning framework to learn such graph509
summaries. Due to the lack of benchmark and standard datasets, we collected a dataset that con-510
tains Wikipedia place summaries as well as a geographic knowledge graph for 369 places as seed.511
In order to explore different possibilities of modeling the summarization process, we suggested512
different alternatives for the actions and rewards formulation in the model. By testing 5 models513
using different combinations of the alternative components, we conclude that a spatially-explicit514
model yields superior summarization results compared to non-spatial models, thereby confirming515
that spatial is indeed special as far as knowledge graph summarization is concerned.516

In the future, we would like to test if reducing the variance in the Monte Carlo Policy Gradient517
method by using an advantage function or the Actor-Critic framework would help improve the518
performance. Finally, our and other approaches do not consider datatype properties which is an519
important goal for future research.520
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