
THE MAXIMAL COVERING LOCATION PROBLEM 

RICHARD CHURCH 
CHARLES ReVELLE 

The Johns Hopkins University 

The belief that mathematical location modeling can identify "optimal" location 
patterns rests on the basis that some realistic objective can be identified and by some 
measure quantified. For example, in the area of private facilities location analysis, 
a reasonably accurate statement of the objective of locating warehouses is to mini- 
mize the costs of manufacturing and distribution. Since most cost elements in- 
cluded in the objectives of private facility location can be reasonably estimated, 
the models can picture with some degree of accuracy the real location problem they 
are designed to solve. 

Unlike private facility location analysis, the objectives of public facility loca- 
tion analysis are more difficult to embrace and to quantify. The difficulty in defin- 
ing direct measures of public objectives has resulted in a search for some surrogate 
measure with which the decision maker may be comfortable. Two different 
surrogate measures which have received attention in location models are: (1) 
total weighted distance or time for travel to the facilities, and (2) the distance or 
time that the user most distant from a facility would have to travel to reach that 
facility, that is, the maximal service distance.* 

The use of a maximal service distance as a measure of the value of a given 
locational configuration has been discussed at length by Toregas and ReVelle 1 who 
show that it is an important surrogate measurement for the value of a given 
locational configuration. For a given location solution, the maximum distance 
which any user would have to travel to reach a facility would reflect the worst 
possible performance of the system. In the regional location of emergency 
facilities such as fire stations or ambulance dispatching stations, the concept of 
the maximal service distance is well established. ~,3 

The maximal service distance concept appears in the Location Set Covering 

The authors gratefully acknowledge a grant by the Ford Foundation to the Department of 
Geography and Environmental Engineering of The Johns Hopkins University. This grant 
supported the computer studies associated with this work. 

* The concept of a maximal service distance is used throughout this text, although the 
use of a maximal service time may be equally applicable. 

1 C. Toregas and C. ReVelle, "Optimal Location under Time or Distance Constraints," 
Papers of  the Regional Science Association, XXVIII, 1972. 

National Board of Fire Underwriters, "Standard Schedule for Grading Cities and Towns 
of the U.S. with Reference to their Fire Defenses and Physical Conditions," New York, 1956. 

3 H. Huntley, "Emergency Health Services for the Nation," Public Health Reports, LXXXV, 
No. 6 (June, 1970). 
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Problem. 4'5'6 This problem identifies the minimal number and the location of 
facilities, which ensures that no demand point will be farther than the maximal service 
distance from a facility. By solving the location set covering problem over a range 
of values of distance, it is possible to develop a cost-effectiveness curve from the pairs 
of  numbers (maximal service distance S, minimum number of  facilities to cover). 

The number  of  facilities is used in the location set covering problem as the 
only cost factor which enters the decision process. There exists evidence that 
isolating the number of  facilities as the most significant cost parameter may be 
valid in many real world formulations. Specifically, if unit costs are independent 
of site and number of demand points covered, the use of number of facilities is a 
correct indicator of cost. 

Examination of the cost-effectiveness curve reveals that for a given number of  
facilities there may be many  location solutions which fulfill the requirement of  
coverage. For a desired level of expenditure then (e.g., fixed number of  facilities), 
one may wish to determine the solution with the smallest maximal service dis- 
tance. 7,8,9 This point on the curve is identified by Minieka 1~ as the left-most 
corner point of the curve for a stated number of facilities. 

It  could happen that the distance value obtained in this manner is much larger 
than the desired distance S. I f  it is, the decision maker may shift his attention to 
concern with the total population covered within S. Having realized that his 
resources (facilities) are insufficient to achieve total coverage within his distance 

goal ,  the decision maker may seek to cover as many as possible within S using 
those limited resources. That is, facing the reality of  an insufficient number of 
facilities, he may relinquish his goal of total coverage within S and attempt instead 
to locate the facilities in such a way that as few people as possible lie outside the 
desired service distance. What is being suggested is a third surrogate for the 
utility of a location pa t t e rn~ the  population covered within some desirable dis- 
tance. The following problem may be stated: 

Maximize coverage (population covered) within a desired service distance S by 
locating a fixed number of facilities. 

We will designate this problem as the Maximal Covering Location Problem 
(MCLP). 

4 Toregas and ReVelle, op. cit., p. 1. 
C. Toregas, C. ReVelle, R. Swain, and LI Bergman, "The Location of Emergency Service 

Facilities," Operations Research, XIX, No. 5 (October, 1971). 
6 C. Toregas and C. ReVelle, "Binary Logic Solutions to a Class of Location Problems," 

Geographical Analysis, V, No. 2 (April, 1973). 
7 S. Hakimi, "Optimum Location of Switching Centers and the Absolute Centers and Medians 

of a Graph," Operations Research, XII (1964), p. 450. 
s M. Rosenthal and S. Smith, "The M-Center Problem," Operations Research Society of 

America, 1967 National Meeting, New York, N.Y. 
9 E. Minieka, "The M-Center Problem," SIAM Review, XII, No. 1 (January, 1970). 

lo Ibid. 
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A trade-off curve may be developed here as well showing the maximum 
possible coverage within the desired distance S for various levels of expenditure 
(that is, for various numbers of facilities). Such a curve can be developed by 
solving the maximal covering location problem for a fixed S over a range of number 
of facilities. The corresponding pairs of (number of facilities, maximal popula- 
tion covered) creates the desired curve. For  instance, five facilities may be positioned 
to achieve coverage of 90 percent of the population, but ten facilities may be 
required for 100 percent coverage. The decision maker may view the required 
additional funds as money which could be spent in other beneficial ways than 
coverage within the desirable distance. 

Although the decision maker may focus his interest on covering as many as 
possible within the desired service distance S, he may also be concerned with the 
quality of service afforded people not covered within that distance. In fact, there 
may be an undesirable distance to facilities, a distance standard, beyond which no 
one should be. In short, the decision maker may want to cover the maximum 
population possible within the desirable distance but ensure at the same time that 
no one is farther than a distance T(T > S) to his closest facility. Insistence on 
total coverage within T may be included in order to provide some degree of equity 
to those not served within the shorter and more desirable service distance S. The 
closer T can come to the desirable distance S, the fairer the solution is to the 
people not covered within S. 

The following Problem may be stated: 
Locate a fixed number of facilities in order to maximize the population 
covered within a service distance S, while maintaining mandatory coverage 
within a distance of T(T > S). 

This problem shall be designated as the maximal covering location problem with 
mandatory closeness constraints. 

MATHEMATICAL FORMULATION OF THE 
MAXIMAL COVERING LOCATION PROBLEM 

The maximal covering location problem seeks the maximum population 
which can be served within a stated service distance or time given a limited 
number of facilities. Defined on a network of nodes and arcs, a mathematical 
formulation of this problem can be stated as follows: 

I. Maximize 

S.T. 

z = ~ a~y~ 

)-]. xi > y~ for all i E I (1) 

xj = P (2) 
j ~ J  

xi = (0, 1) for a l l j  ~ J (3) 

y~ = (0, 1) for all i E I (4) 
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where 
I =  
J =  
S =  

d g j  = 

X j  = 

N ~ =  

denotes the set of demand nodes; 
denotes the set of facility sites; 
the distance beyond which a demand point is considered "uncovered" 
(the value of S can be chosen differently for each demand point if 
desired); 
the shortest distance from node i to node j ;  

10 if a facility is allocated to site j 
otherwise; 

{j  E J[d,j ~ S}; 
population to be served at demand node i; 

p = the number of facilities to be located. 

N~ is the set of facility sites eligible to provide "cover" to demand point i. A 
demand node is "covered" when the closest facility to that node is at a distance 
less than or equal to S. A demand node is "uncovered" when the closest facility 
to that node is at a distance greater than S. 

The objective is to maximize the number of people served or "covered" within 
the desired service distance. Constraints of type (1) allow y~ to equal 1 only 
when one or more facilities are established at sites in the set N~ (that is, one or 
more facilities are located within S distance units of demand point i). The 
number of facilities allocated is restricted to equal p in constraint (2). The solu- 
tion to this problem specifies not only the largest amount of population that can 
be covered but the p facilities that achieve this maximal coverage. 

An equivalent formulation of the maximum covering location problem can be 
derived by substituting 1 -- y~ = y~ where 

{~ if demand node i is not covered by a facility within S distance 
Y~ = otherwise. 

Constraints of type (1)can then be written as 

x~.> 1 - - y ~  i ~ I  
j~N~ 

which is equivalent to 

~ x j + ) ~  > 1 i ~ l .  
./~ NO, 

This inequality implies that either 

xj _> 1 or ~ = 1 
j~N~ 

Stated verbally, either one or more facilities are built within S units of demand 
point i, or demand i is uncovered and p~ = 1. After variable substitution, the 
objective can be written as 

Maximize ( Z  a~ + ~, -- a~y3.  
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Note that the first sum is a known constant. Since the maximization of a 
negative quantity is equivalent to a minimization of the positive quantity, the 
objective function can be simplified to 

Minimize Y] a~yi. 

This objective can be interpreted as minimizing the number of people that will 
not be served within the maximal service distance. The complete problem devel- 
oped by variable substitution is: 

II. Minimize z = Z] agy~ 
g e l  

S.T. ~ x~. -t-P~ >_ 1 for all i E I (5) 
jeNr  

E xj =- p (6) 

x~ = (0, 1) for a l l j  ~ J (7) 

P~ = (0, 1) for all i ~ I .  (8) 

This problem seeks to minimize the population left uncovered if p facilities are to 
be located on a network. 

The formulations are equivalent since one can be transformed mathematically 
into the other by the variable substitution. The latter formulation was utilized 
in solving this problem with linear programming. The maximal covering location 
problem has been solved optimally by linear programming and heuristically by 
several methods. 

SOLUTION TECHNIQUES 

Heuristic Approaches 

The first heuristic considered is called the Greedy Adding (GA) Algorithm. 
In order to achieve a maximal cover for p facilities under a given service distance, 
the algorithm starts with an empty solution set and then adds to this set one at a 
time the best facility sites. The GA algorithm picks for the first facility that 
site which covers the most of the total population. For the second facility, GA 
picks the site that covers the most of the population not covered by the first 
facility. Then, for the third facility, GA picks the site that covers the most of the 
population not covered by the first and second facilities. This process is con- 
tinued until either p facilities have been selected or all the population is covered. 
Details of the algorithm are given in Church. 11 

When solving for the p-facility solution, the GA algorithm automatically 
calculates maximal cover values for the one- to p-facility problems. It should be 
noted here than the one-facility maximal covering solution obtained by the GA 

~ R. Church, "Synthesis of a Class of Public Facilities Location Models," Ph.D. thesis 
(The Johns Hopkins University, Baltimore, Md., 1974). 
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algorithm is optimal, for the one-facility solution is by definition the site which 
covers the most of the total population. However, for solutions where p is 
greater than i, optimality is not guaranteed. 

It is important to note that the GA algorithm never removes facility sites from 
the solution set. Therefore, it is possible that a facility site added to the solution 
set in the early iterations of the algorithm may not be justified later in the algorithm 
due to subsequent facility site assignments. The presence of a "no longer justified" 
site in the solution set would imply nonoptimality. The GA algorithm, then, 
could be improved by including a technique that would reduce the probability of 
maintaining "no longer justified" sites in the solution set. 

The second heuristic which builds on the first is designated as the Greedy 
Adding with Substitution (GAS) Algorithm. The GAS algorithm determines new 
facility locations at each iteration just as the Greedy Adding Algorithm did, but 
in addition, seeks to improve the solution at each iteration by trying to replace 
each facility one at a time with a facility at another "free" site. If improvement is 
possible, the facility site chosen to replace a particular facility is the one which 
gives the greatest improvement in the objective. The GAS algorithm is outlined 
in Church. 1~ 

The GAS algorithm, like the GA algorithm, automatically calculates maximal 
coverage for problems with one, two . . . .  to p facilities. Again, however, global 
optimality is not guaranteed. 

The method of trying to replace one at a time the facilities in the solution in 
an effort to improve coverage is similar in concept to the a-optimum method 
introduced by Shen Lin in solving the traveling salesman problem, la In applying 
the a-optimum concept to the maximal covering location problem, one can state 
that a maximal covering solution is a-optimal if it is impossible to obtain a solu- 
tion with greater cover by replacing any a of its facilities by any other set of a facility 
sites. Using this definition, GAS is classified as a 1-optimum algorithm. 

Conceptually, the GAS algorithm is similar to the Ignizio heuristic. 1~ The 
difference is that GAS replaces any facility in the solution set by another facility 
if resultant coverage increases, whereas the Ignizio heuristic replaces only the 
facility sites which contribute less to the total coverage than the contribution 
made by the last added facility. The a-optimum method applied to a random 
start solution or heuristically derived solution has been used by Ignizio and 
Harnett to solve the location set covering solution. 15 The Ignizio heuristic has 

1~ Ibid. 
13 S. Lin, "Computer Solutions of the Traveling Salesman Problem," The Bell System Technical 

Journal, XLIV (December, 1965). 
14 j. p. Ignizio and R. E. Shannon, "Heuristic Programming Algorithm for Warehouse Loca- 

tion," AI lE  Transactions, II, No. 4 (December, 1970). 
15 j.p. Ignizio and R. M. Harnett, "'Heuristically Aided Set-covering Algorithms," Depart- 

ment of Industrial Engineering, University of Alabama at Huntsville, 1972. 
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been utilized by Case and White 16 to solve a problem related to the maximal 
covering problem. 

Case and White sought the maximum number of demand points rather than the 
maximal population which could be covered with a stated number of facilities. 
Their problem is a subproblem to the maximal covering problem with a~ = 1 for 
all demand points. Like the Ignizio heuristic, GAS allocates facilities to sites one 
at a time in a steepest ascent manner and employs a subroutine which replaces 
facilities in the solution which are no longer justified, due to subsequent facility 
assignments. From a more general viewpoint, the GAS and Ignizio heuristics 
resemble a warehouse location algorithm developed by Kuehn and Hamburger. 17 

L i n e a r  P r o g r a m m i n g  

Linear programming may also be applied to the maximal covering location 
problem and will obtain globally optimal solutions. All that is necessary is to 
restrict the variables xi and fi~ in Problem II to be nonnegative instead of zero or 
one. 

In an optimal linear programming solution to this problem, the variable x i 
will never be greater than one (unless total coverage were achieved). If some xj 
were greater than one at optimality it could be reduced to one without violating any 
constraint (5). Further, the reduction could be applied toward increasing some 
other xj within the constraint that total facilities equal p (6). This will allow 
some p~ to be decreased leading to a decrease in the objective. This contradicts 
the assumption of optimality. 

Since the objective function keeps each variable y~ as small as possible and 
because it is never necessary for .~ to be greater than one in order to satisfy con- 
straints (5), p~ will never be greater than one in an optimal linear programming 
solution. Since xj will never be greater than one unless total coverage is achieved, 
the linear program will terminate with an optimal solution where 0 < xj _< 1 for 
a l l j E J a n d 0 _ < ~ _ <  1 for a l l i E L  

If linear programming is applied and total coverage is not possible, the 
optimal solution will have either: 

Case 1: All xj, P~ = (0, 1), called an "all-integer answer"; 
Case 2: Some x / s  fractional, called a "fractional answer." 
If the linear program terminates with all xi and 37~ = (0, 1), the optimal 

solution to the maximal covering location problem has been determined. If the 
linear program terminates as Case 2, the optimal solution given is not feasible to 
the zero-one problem. More work will be necessary to obtain an optimal zero-one 

le j. White and K. Case, "On Covering Problems and the Central Facilities Location Prob- 
lem," unpublished paper, Virginia Polytechnic Institute and State University, Blacksburg, Va., 
]973. 

17 A. Kuehn and N. Hamburger, "A Heuristic Approach for Locating Warehouses," Manage- 
ment Science, X (1963), p. 643. 
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solution. The solution value does, however, make explicit the lower bound on 
the objective function. 

The Mathematical Programming System (MPS) on the IBM 360 Model 91 
computer was used to obtain optimal linear programming solutions to maximal 
covering problems. The problems were stated as minimizations of population 
uncovered. In order to solve the problem, a Fortran IV program was developed 
to write the problem on a disc file. This disc file was developed in such a manner 
that the MPS system could access the problem file and perform the necessary linear 
programming algorithm. 

When the solution for more than one number of facilities is desired for a 
given network and a stated service distance S, postoptimal routines of the MPS 
system were used. For  example, suppose that the desired range in the number of 
facilities was p = 1 to p = 10. The problem file was set up for the linear program 
with p = 1. After the MPS system obtained an optimal solution for this value 
of p, the option for parameterization of the right-hand side was used to obtain 
solutions for p = 2 to p = 10. The cost of computing each additional solution 
(p = 2 to p = 10) is only a small increment over that for the first solution (p = 1). 

Resolving Fractional Solutions to the Linear Program 

Our computational experience is that almost 80 percent of the time the linear 
programming solution is all zero-one. Only approximately 20 percent of the 
time it is necessary to resolve fractional problems. Two different techniques, a 
method of inspection and the method of Branch and Bound, have been used to 
obtain all integer solutions when the linear program terminates fractional. The 
first method shows that at times it is possible to determine an all-integer optimal 
solution to a p-facility problem directly from the fractional p-facility solution and 
from an optimal all-integer ( p -  1)-facility solution. The explanation of such a 
possibility and the ease with which the fractional resolution can be made can be 
best described by an actual example. Consider the following information: 

The maximal covering problem was solved over the range p = 1 to p ---- 9 
for a 55-node network by the MPS system. The solutions were all 
zero-one except for the solutions at p = 8 and p = 9. The total popula- 
tion of nodes on the network is 640. The seven-facility solution 
covers all but two nodes; namely, demand node A and demand node B. 
The poulation at A is five and the population at B is two. The smallest 
population of any node is two. Each demand node is a possible facility 
site. The population covered by the optimal but fractional linear 

programming solution with p = 8 was 639. 
The problem, then, is to determine, if possible, the optimal all-integer solutions for 
p = 8 and p = 9 using only the above information. In order to do this the 

following two observations are important: 
I) Since the optimal seven-facility solution covers all but A and B, the seven- 
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facility solution covers 633 (i.e., 640 -- 5 -- 2 ----- 633). 
2) Either the optimal all-integer eight-facility solution will totally cover, or 

given that it does not, it can cover at most all the population except the 
smallest node population. This means that either the optimal eight- 
facility solution will cover 640 or at most 638. 

Since the optimal p = 8 linear program covers 639, the optimal all-integer p = 8 
solution cannot cover. Thus, observation (2) shows that the all-integer optimal 
answer can cover at most 638. By adding node A to the seven-facility solution, 
an eight-facility solution set is formed where coverage is 638. Since this is the 
best an eight-facility solution can possibly cover, this solution must be optimal. 
Since the eight-facility solution cannot totally cover, a nine-facility solution that 
can totally cover would indeed be optimal. Such a solution is created by adding 
nodes A and B to the seven-facility solution. Thus, the information provided in 
a ( p -  l)-facility solution may be useful in determining an all-integer p-facility 
solution, when such is not provided by linear programming. 

The method of Branch and Bound 18 was applied to fractional linear program- 
ming solutions which did not yield to the method of inspection. By branching on a 
fractional variable, i.e., by setting either xj = 1 or x~ = 0, two more linear pro- 
gramming problems are created. If  the linear programming solution to each of  
these two problems has all x~ ---- (0, 1), the solution that has the smaller value of 
the objective function is optimal. If the solution to the problem with the smaller 
value of the objective is fractional, additional branching and computations may 
be required. 

PERFORMANCE OF THE ALGORITHMS 

Two test networks were used to illustrate the value of the maximal covering 
location approach as well as to evaluate the performance of the two heuristics 
and the optimal linear programming approach. The first network is a 30-node 
problem designed by Rojeski and ReVelle. 19 The second network contains: 55 
nodes and was described by Swain. ~~ Each network ensures randomness and 
feasibility of the internode distances for geographic interpretation. It is assumed 
that each demand node is a possible facility site. 

The optimal linear programming approach has been applied to many maximal 
covering location problems defined on the 55-node network used by Swain. In 
obtaining all-integer optimal solutions, fractional linear programming solutions 
were resolved by first attempting to use the method of inspection described earlier. 

18 H. M. Wagner, Principles of  Operations Research with Applications to Managerial Decisions 
(Englewood Cliffs, N.J.: Prentice-Hall, 1969). 

19 p. Rojeski and C. ReVelle, "Central Facilities Location under an Investment Constraint," 
Geographical Analysis, I1, No. 4 (1970). 

2o R. Swain, "A Decomposition Algorithm for a Class of Facility Location Algorithms," Ph.D. 
thesis (Cornell University, Ithaca, N.Y., 1971). 
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If this was not possible, the method of Branch and Bound was used. 
Table 1 compares the performance of the linear programming approach and 

the heuristics in solving 27 maximal covering location problems defined on the 
55-node network. For each service distance S, maximal covering solutions for a 
range of p values were obtained using the MPS system with the parameterization 
option. Almost 80 percent of the linear programs terminated all-integer optimal, 
and nearly 90 percent of the total problems were solved by the combination of 
linear programming and the method of inspection. Only 10 percent of the time 
was Branch and Bound necessary to resolve fractional problems. In every case of 
application of the Branch and Bound algorithm, all that was necessary to obtain 
an all-integer optimum was the solution of several linear programs. Computation 
times are given for the MPS execution time only. 

The GA algorithm was performed by a Fortran IV program on the IBM 7094 
system. Computation time includes the set-up of the particular maximal covering 
location problem from basic data as well as the execution time of the algorithm. 
From the table, it can be seen that the GA algorithm is nonoptimal more than 
60 percent of the time. The GAS algorithm was also performed by a Fortran IV 
program on the IBM 7094 system. Computation time includes the development 
of problem information from basic data as well as execution time of the algorithm. 
The GAS algorithm was nonoptimai almost 50 percent of the time. 

For each heuristic solution generated, the coverage was no lower than 
90 percent of the corresponding optimal coverage value. In other words, the 
heuristics applied to the 55-node network attained close to optimal Solutions, 
if not the optimal solutions. One reason for this good performance is the fact 
that the 55-node network contains a very dense area that can generally be covered 
by one facility. This tends to make the first facility's coverage so large that it 
always remains the most significant portion of any solution. The large significance of 
the first facility tends to outweigh any differences in coverage due to added facilities 
which are either heuristically or optimally determined. While it is true that the 
heuristics have done well in this problem, it is also true that the only reason we 
can assess their quality is that we have an efficiently derived optimal solution to 
which they may be compared. Enumeration to determine optimal solutions for 
comparison to heuristic solutions would generally be out of the question because 
of the computer time it would consume. 

For any desired value of S (maximal service distance) and p value (the 
number of facilities to be located), a maximal covering location problem can be 
defined. By holding S fixed, and solving over a range of p values, one can create 
a cost-effectiveness curve which outlines the change in effectiveness (in terms of 
population covered) as the system cost is altered by increasing or decreasing the 
number of available facilities. 

Figure 1 shows the cost-effectiveness curve for the maximal covering location 
problem defined on the 30-node problem with the maximal service distance fixed 
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at S----2.0. This curve represents optimal maximal covering solutions obtained 
by the MPS system with the parameterization option. The increase in number of 
people covered by the addition of one facility decreases as the total number of 

facilities increases. The optimal solution for p = 12 also represents an optimal 
solution to the location set covering problem defined for S = 2.0. This is true, 

since p = 12 represents the lowest p value for which a 100 percent coverage is 
attainable. 
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PROBLEM FROM ROJESKI AND REVELLE, REF. 19) 

An important choice for the decision maker is deciding what level of expenditure 
(how many facilities can be used) can be justified by the resultant coverage. For 
example, even if there are enough funds to build twelve facilities and cover 100 

percent, the eight-facility solution and 90 percent coverage may be very acceptable. 
Further, the reduced location cost may allow funds to be spent upgrading other 
levels of service not related to location. Thus, the cost-effectiveness curve yields 
much valuable information to the decision maker. Such information would 

seem beneficial to the formulation of logical and sound location plans. 

M A X I M A L  C O V E R I N G  W I T H  

M A N D A T O R Y  C L O S E N E S S  C O N S T R A I N T S  

Even though a decision maker might seek to maximize coverage within some 

desirable maximal service distance, there may be an undesirable distance to 



CHURCH, REVELLE: MAXIMAL COVERING LOCATION PROBLEM 113 

facilities beyond which no demand should be. Insistence on some type of 
mandatory closeness was introduced as a mechanism for achieving some form 
of fairness for those not served within the shorter and more desirable service 
distance S. By including this mandatory closeness concept in the maximal covering 
location problem, the following location problem was postulated: 

Locate p facilities at possible sites on the network to maximize the population 
that can be covered within a given service distance S while at the same time 
ensuring that the users at each point of demand will find a facility no more 
than T distance (T > S) away. 

A mathematical formulation of this problem is very similar to Problem I. The 
objective function and the constraint on total number of facilities are identical 
with those of the earlier formulation. There are now, however, two types of 
covering constraints, namely: 

Z x~ > y~ for all i E I (9) 
j~Nr 

and 

where 

xr > 1 for all i ~ I (10) 
j ~ M s 

Ms ---- {j[d~ < T} 

and all other notation is as previously defined. 

Note that since T > S, Ms contains the set N~. This is the maximal covering 
location problem with mandatory closeness constraints. The mandatory closeness 
constraints (10) ensure for each demand point i that there must be at least one 
facility within the distance T. Unlike the problem without mandatory closeness, 
this problem has feasible solutions only for certain integer values of p, the number 
of facilities. The lower limit of the range of values of p is the minimal number of 
facilities necessary to cover all demand points within T distance units. The same 
variable substitution may be used to transform this to a problem which minimizes 
population not covered within S while maintaining complete coverage within T. 

Suppose that for a certain problem the smallest number of facilities necessary 
for total coverage within T is p*. A p*-facility solution that does cover all within 
T is an optimal location set covering solution since p* is the smallest number of 
facilities necessary to cover all within T. There could well be several different 
p*-facility solutions that maintain total coverage of everyone within T distance units. 
One could seek to maximize coverage within S (where S < T) while maintaining 
total coverage within T by relocating the p* facilities. This implies that we would 
be picking among the alternative optima to the location set covering problem the 
solution that achieves the largest coverage within the smaller distance S. The 
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use of maximal covering with mandatory closeness constraints, then, can be con- 
sidered a technique for obtaining more desirable solutions than the location set 
covering problem. The new solutions will continue to cover the entire population 
and are desirable in the sense that they provide greater population coverage within 
an even closer and more desirable distance. 

The maximal covering location problem with mandatory closeness constraints 
has been solved by applying linear programming to the minimizing form of the 
problem, that is, by minimizing the number not covered within S while maintaining 
complete coverage within T. The problem was solved using the MPS 360 system on 
the IBM 360 Model 91 computer. Again, if more than one p-facility solution 
was desired, the MPS parameterization option was used. Essentially, the problem 
with mandatory closeness constraints is set up with the number of facilities equal to 
the smallest number of facilities necessary to cover all demand within T distance 
units; the parameterization option was used to develop optimal answers for 
increasing values ofp.  It is not necessary to al lowp to be greater than the number 
of facilities needed to cover all demand nodes within the smaller distance S. 

In limited computational experience, eight out of eleven linear programs 
terminated all-integer, and hence optimal to the zero-one problem. All fractional 
linear programming solutions were able to be resolved by the method of inspection. 
A heuristic approach to solve the problem is also possible? 1 

Suppose that a decision maker is interested in covering all demand within a 
service distance of 15. Let us say that the 55-node network represents his par- 
ticular problem. His goal, we will assume, is to achieve complete coverage with 
the fewest possible facilities. The decision maker is implicitly structuring the 
location set covering problem ~ for S = 15. This is the minimum number of 
facilities which accomplishes coverage within a specified maximum distance. 
Figure 2 gives a location set covering solution for a service distance of S = 15 on 
the 55-node network. In this case five facilities are required to cover all nodes 
within a distance of 15. 

The circled nodes on the graph given in Figure 2 represent the five sites chosen 
to house facilities. The nodes of the graph are partitioned into sets, each node 
being assigned to its closest facility. In Figure 2 there are two types of partitions: 
those enclosed by solid lines and those indicated by dashed lines. The solid line 
partitions indicate which nodes are covered within S = 15. The dashed line 
partitions denote which nodes are covered within S =  10. The reason for 
showing which nodes are covered by this solution within a distance of 10 will become 
clear momentarily. For  example, node 42 is in the solid line partition surrounding 
a facility located at node 25. This means that the closest facility to node 42 is 
located at node 25 and that the distance from node 42 to that facility is less than 
15. Furthermore, node 42 is not in the dashed line partition for the facility 

2x Church, op. cit. 

~2 Toregas and ReVelle, op. cit. 
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SOLID LINE PARTITIONg DENOTE COVERAGE 
WITHIN T =  15; DASHED LINE PARTITIONNS F 
DENOTE COVERAGE WITHIN S -7- 10. 
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FIGURE 2. A LOCATION SET COVERING SOLUTION FOR S = 15 
(DATA FROM SWAIN, REF. 20) 

located at node 25, indicating that node 42 lies at a distance greater than 10 from 
its closest facility, node 25. Figure 2 also shows, for this particular location set 
covering solution, that 201 of the total population are covered within a distance of 
10; the rest of the population, 439, is located between 10 and the maximal service 
distance of  15. 

It was stated in the previous section that the maximal covering location prob- 
lem with mandatory closeness constraints could be used to choose among 
the alternative optima of the location set covering problem, the solution which 
achieves the best coverage for some more desirable "inner" distance. For example, 
by solving the maximal covering location problem with mandatory closeness con- 
straints with S---- 10 and T----- 15, still using five facilities we could determine the 
solution that provides the best coverage within S = l0 while maintaining com- 
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FIGURE 3. A N  OPTIMAL SOLUTION TO THE MAXIMAL COVERING LOCATION 

PROBLEM WITH MANDATORY CLOSENESS CONSTRAINTS 

(DATA FROM SWAIN, REF. 20) 

plete coverage within T = 15. 
It is entirely possible that the decision maker may feel it desirable to cover as 

much population as possible within 10 if he can still provide complete coverage 
within 15. After all, he appears to be giving up nothing. The maximal covering 
location problem with mandatory closeness constraints with S = 10 and T = 15 
was solved for this network and the solution is presented in Figure 3. Essentially, 
Figure 3 depicts the alternative optimum of the location set covering problem for 
S = 15 which covers the maximum population within I0. Notice that the coverage 
within I0 for this solution amounts to 354 out of 640. By the nature of the maximal 
covering problem with mandatory closeness constraints, it is possible to state 
that no more than 354 can be covered within 10 while maintaining complete coverage 
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within 15, given no more than five facilities. The solution in Figure 3 is clearly 
a better solution than the one given in Figure 2, for the coverage within 10 is 75 
percent better than the solution given in Figure 2. Therefore, by using the maximal 
covering location problem with mandatory closeness constraints, it is possible to 
easily determine the most desirable location set covering solutions. In the above 
problem, the use of the maximal covering location approach with mandatory 
closeness constraints has provided substantial improvement over the original loca- 
tion set covering solution given in Figure 2. 

We know that it is impossible to cover more than 354 within 10 while 
maintaining complete coverage within 15 using five facilities. Thus, it would be futile 
to try to cover more than 354 within I0 unless either more facilities were allowed or 
the mandatory closeness constraints of 15 were relinquished. 

POPULATION INSIDEIO . . . . . . . . . . . . . . . . . . . . . .  609 ] 
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A N  OPTIMAL SOLUTION TO THE MAXIMAL COVERING LOCATION 

PROBLEM FOR S = 10 ( D A T A  FROM SWAIN,  REF.  20) 
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In the above example problem, it is, in fact, possible to achieve a very large 
"maximal cover" within S ~ 10 using five facilities if one relaxes the mandatory 
closeness constraint of 15. From the viewpoint of the decision maker, achieving 
maximal coverage by five facilities within a distance of 10 could be very desirable, 
if the resultant coverage within 10 is sufficiently improved from 354 and if the 
number of people outside of 15 is not excessive. 

Figure 4 gives a maximal covering solution for S----10. A node in the 
graph which is not covered within T----15 is not included in any partition. 
Notice that the population covered within S---- 10 has reached 609 out of a total 
population of 640. In this case, only four nodes with a combined population of 
12 are at a distance greater than 15 from their closest facilities. 

In order to cover all demand nodes within 15, the amount covered within l0 
must decrease from 609, given by the maximal covering problem with S = 10, to 
at most 354 which value was given by the maximal covering problem with a 
mandatory closeness constraint of 15. This reduction of 255 in the population 
covered within 10 can be viewed as one of the costs of maintaining all nodes within 
a maximum distance of 15. That is, the mandatory closeness constraints ensured 
that a population totaling 12 out of 640 (at four out of 55 nodes) found service 
within 15 distance units. At the same time, a population totaling 255 was forced 
outside the distance of 10. 

In summary, it has been shown that the maximal covering location problem 
and the maximal covering location problem with mandatory closeness constraints 
are powerful location techniques which build on and, in fact, supplant the location 
set covering problem. The maximal covering location problem with mandatory 
closeness, furthermore, may be used to provide the most desirable of the solutions 
to the location set covering problem. It is also easy to see that "good" locational 
decisions can be made by all three techniques, but enlightened use of the maximal 
covering location problems appears to lead to superior patterns of population 
coverage. The above example problems show that the additional information 
gained by using these two techniques in conjunction with the location set covering 
approach can lead to better decision making with regard to public facility location. 


